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Abstract

In this thesis various topics in universal lossless source coding are dis-
cussed and analyzed. The main focus in this work is on lossless data
compression of grayscale still images. Such images are, for example, fre-
quently occurring in medical imaging.

Based on theoretical considerations and empirical observations new com-
pression algorithms are presented that are, in terms of compression per-
formance, efficient compared to traditional methods.

This work includes research on how to use the Context Tree Weighting
algorithm, linear prediction and probability assignment techniques in
lossless data compression. The performance of these algorithms/methods
is studied both asymptotically and for usage on short data sequences.
The presented techniques can be used separately or together when de-
signing efficient lossless data compression systems.
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Chapter 1

Introduction

1.1 Motivation

In recent years there has been a vivid interest in lossless compression
of (electronic) picture data. In particular, picture compression is consid-
ered very useful in multi-media applications and in distributed informa-
tion systems that operate in network environments. However, the vast
majority of research and development of picture compression techniques
is focused on lossy source coding. This is primarily due to the fact that
by allowing a small amount of distortion in the reconstructed picture
one can obtain much better compression performance than is possible
for lossless source coding. From information theory we know that there
is a tradeoff between the compression performance and the amount of
distortion in the restored picture. This tradeoff is formalized in the rate-
distortion theory. The basis for rate-distortion theory was formulated by
Shannon in his landmark 1948 paper [Sha48]. For a summary of the re-
search on lossy data compression (or source coding) since 1948 we refer
to [BG98]. On the other hand lossless source coding techniques, which
allow the exact recovery of a picture from its compressed version, can
only provide moderate compression performance. Yet, there are situa-
tions where only lossless (or near lossless) picture compression can be
used. This is for example the case when dealing with medical data such
as X-ray, CT-scan, and MR-scan pictures (e.g. see Figure 1.1), where le-
gal issues may forbid or make it undesirable to apply lossy coding tech-
niques. On the other hand the amount of data that is generated each
year in a large Swedish hospital environment such as the university hos-
pital “Malmo Akademiska Sjukhus” (MAS) in Malmé is enormous and
picture compression is of paramount importance to reduce storage costs
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Chapter 1: Introduction

and transmission times. Again taking the case of MAS, one estimates
the yearly! amount of picture data to be 7 Terabytes!

Besides medical applications it is foreseeable that in the future we want
to compress data of pictures that are “signed” with electronic signatures
or water-marks for copyright enforcement. Also in such a scenario the
use of lossless or near lossless picture compression may be necessary.
Another application of (near) lossless compression is that of commercial
image databanks where prior to the selling of the images, the required
customer quality/resolution is not known. Hence, there is need for re-
search on improved lossless picture compression techniques. In partic-
ular, the technical goals of our research were inspired by the needs for
picture compression at the new radiology physics laboratory at the MAS
university hospital in Malmé. One of the goals for this laboratory is to
centralize processing and storage of medical data and to provide fast ac-
cess to data through high-performance networks.

In the historical perspective most work in lossless image compression
has been mainly focused on rather ad-hoc decisions and experiments,
e.g., the former lossless JPEG standard [PM93]. One problem, from the
compression ratio perspective, is the lack of knowledge on how to apply
the theoretical work in information theory and source coding to lossless
image compression.

1.2 Existing Methods

Depending on the aim of (lossless) image compression we focus on differ-
ent theories for our solutions. The performance criterias often used to
compare/evaluate image compression schemes are:

¢ Compression ratio (in lossy image compression we also have to con-
sider the introduced distortion).

o Complexity (hardware requirements, algorithmic complexity).
e Speed (time to compress/decompress).

The main criterion used in the work of this thesis is the compression
ratio. We will also make some remarks about algorithmic complexity
since it must be possible to use the presented methods in practice al-
though we will not discuss the actual implementations.

If we again consider the case of medical images at a large Swedish hos-
pital we see that the intention may be to store the individual images for
a long time, e.g. up to 20 years. In this period of time an image will be

1Estimate for 1997.



1.2 Existing Methods

Figure 1.1: An example of a medical image. This is the CT-image “thorax”.



Chapter 1: Introduction

retrieved about once a year or so. The equipment used in this context is
what most people would call very sophisticated or advanced. We could
therefore conclude that lossless image compression in this area is mainly
focused on the compression ratio and that complexity and speed of com-
pression are less important. Fast decompression is, however, desirable
to obtain acceptable performance during image retrieval.

In other applications such as image processing/editing software it is of
major importance to have both sufficient speed and a low complexity.
This will often be at the expense of the compression ratio. In many ap-
plications we see a trade-off between complexity (memory requirement,
compression/decompression speed) on one side and compression ratio on
the other side.

At the time of writing of this thesis (spring 2001) there are two major
lossless image compression standards:

¢ JPEG2000, JPEG-LS (JPEG=Joint Photographic Experts Group),
¢ PNG (PNG=Portable Network Graphics).

There are actually two different versions of lossless JPEG standards:
lossless JPEG [PM93] and JPEG-LS [IS098] (or LOCO-I2 [WSS96] and
[WSS00]). The lossless JPEG has been around for a couple of years
but has not gained any public interest since the compression perfor-
mance is very disappointing. The aim with the recently accepted stan-
dard JPEG-LS was to gain both in compression performance and in com-
pression/decompression speed. On the other hand the PNG standard
[Wor96] has been designed for network or web applications. The aim
was therefore to make sure that it should be easy to implement on al-
most all systems, the compression performance should be good and the
decompression speed should be high.

Example 1.1:
A comparison of the compression performance of the image in Figure 1.1:

Method compr. size | compr. time | decompr. time
JPEG-LS (new) 79223 ~05-1s ~05-1s
PNG 135599 ~05—-1s ~0.5-1s

The size of the image is 512x512 pixels and with 8 bits for representation
of each pixel. Thus, totally 262144 bytes are required to describe the
image in its original format. The compression and decompression times
are almost the same for both schemes. |

As a final remark about lossless image compression we note that the com-
pression performance is very hard to improve upon. The public interest

2L.Ow COmplexity LOssless COmpression for Images



1.3 Main Goals

in this matter is therefore more concentrated on the speed performance
than on the possible gain of saving a few bytes here and there. But for
specialized applications and from a theoretical point of view we will see
that there is still more to examine.

1.3 Main Goals

The main goals of this thesis are:

e Contribute to the understanding of lossless data compression of im-
ages.

e Apply the Context Tree Weighting (CTW) algorithm to image com-
pression.

e Design and evaluate different estimation/probability assignment
techniques for sources commonly used in image compression.

e Discuss compression performance for short data sequences and ap-
ply it to practical problems.

1.4 About this Thesis

This thesis consists of four major parts where the three later can be con-
sidered as (almost) independent papers:

e Chapter 2: this chapter is a summary of the “teknisk licentiat the-
sis” presented in 1998.

e Chapter 3: the concept of Prediction and Probability Assignment
(PPA) is discussed and a technique for PPA is presented and ana-
lyzed.

e Chapter 4: in this chapter we define the Context Mapping Function
and present a method along with experiments on how to optimize
the CMF for several different sources.

e Chapter 5: this chapter concerns the compression of request data
in ARQ protocols.

Most of the work in this thesis has already been presented at conferences
etc. according to the following:

e Lossless Compression of Medical Images [Eks95].
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On the Estimation and Model Costs in Lossless Universal Image
Data Compression by Context Weighting [ES96].

Lossless Compression of Grayscale Images via Context Tree Weight-
ing [Eks96].

Weighting of Double Exponetial Distributed Data in Lossless Im-
age Compression [ES98b].

Notes on the P-Context Algorithm [ES98a].

Some Results on Lossless Compression of Grayscale Images [Eks98].

Some Notes on the Context Mapping Function in Lossless Data
Compression [ES00al.

A Technique for Prediction and Probability Assignment (PPA) in
Lossless Data Compression [ES00b].

The Qualitative Modeling and Compression of the Request Sequences
in ARQ Protocols [ERSS01].

This work has been financially supported by:

o Swedish Research Council for Engineering Sciences
(http://www.tfr.se).

¢ Swedish National Board for Industrial and Technical Development
(http:/www.nutek.se).

Some computational resources have been provided by:

e Center for Scientific and Technical Computing, LUNARC, Lund
University, Sweden (http://www.lunarc.lu.se).

e National Supercomputer Center, NSC, Link6ping University, Swe-
den (http://www.ncs.liu.se).



Chapter 2

Lossless Compression of
Grayscale Images

This chapter is a summary of the “licentiat”-thesis Some Results on Loss-
less Compression of Grayscale Images [Eks98]. It is organized such that
each building block of an image compression scheme (see Figure 2.2) is
explained in each section. In Section 2.1 we introduce and define some
basic concepts in lossless data compression and image compression. In
Section 2.2 the topic of context tree models is covered and how to use
these models in lossless image compression. In Section 2.3 we discuss
how to convert the 2-dimensional image data into 1-dimensional data
which is appropriate for our statistical/context tree modeling. In Sec-
tion 2.4 we define and discuss how to use prediction in lossless image
compression in order to reduce the complexity of the statistical model-
ing. In Section 2.5 we define and present some results on the statistical
modeling which is used in combination with the context tree modeling.
Finally, in Section 2.6 we make a simple study of the correlation between
adjacent pixels in images. This is an important aspect since it motivates
the use of prediction and context modeling.

2.1 Source Coding & Image Compression

In this section a general compression scheme for lossless image com-
pression will be presented. This general description is not intended to
cover all available compression schemes, but it will cover current state-
of-the-art lossless compression schemes from an information theoretical
perspective, e.g., we do not consider the implementation aspects of the
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algorithms. Notations and concepts used in this chapter (and through-
out the thesis) are similar or equal to the notations used in [Sme96]'. It
will be assumed that the reader is familiar with the concepts of source
codes.

2.1.1 The Intractability of Optimal Lossless Image
Compression

We start by noting two things that make image compression special: the
image data (from a finite alphabet) is 2-dimensional and images have
finite boundary, i.e., they have a fixed limited size. From the second ob-
servation we can state the following about optimal lossless compression
of individual images when considering the average code word length:

Theorem 2.1:

For the set of all possible images Z = {I;,I,...,I} of a fixed given
size and with their corresponding set of probabilities of occurring P =
{P(I1), P(I,),...,P(It)} an optimal uniquely decodable source code, in
terms of average redundancy, can be found by constructing a Huffman
code based on P. O

The theorem follows directly from the optimality of Huffman codes [CT91].
This construction would not have been possible if the images had infinite
boundary, i.e., the number of possible images, k, would be infinite. Note
also that, except for very small images, Huffman coding as used in The-
orem 2.1 is not a practical technique since k will be a huge value. As an
example, in this thesis we will often use images of size 512x512 pixels
with 8 bits per pixel. The number of possible images with this size is
thus k = 256262144,

2.1.2 Lossless Image Compression Based on Sequen-
tial Universal Source Coding

Based on a basic (universal) lossless source coding scheme, see Figure 2.1,
a general lossless image compression scheme will be presented. A proba-
bility assignment function Pagsign () is said to be universal for a class of
sources if it holds that for any source S in the class that the average code
word length per source symbol asymptotically approaches the entropy
(per source symbol) of the source:

1However, all notations and concepts are defined or explained whenever introduced.
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- 10g(H?:1 PAssign (milml T mifl)) + log(PS(m"))
n

-0 (2.1)

Eg

when n — oco. Since Pygsign(z|-) should be a probability distribution it
holds that Pagsgn(z|-) € [0,1], Vo € {0,1,...,M — 1}, where M is the
source alphabet size. It also holds that:

M—1
Z PAssz’gn(x|') =1. (22)
z=0
. Encoder Code word |
A
Source Probability
S Distribution Passign (-)
Probability
Assignment

Figure 2.1: A basic lossless compression scheme.

The encoder in Figure 2.1 forms the code word? from the assigned prob-
ability distributions and the source symbols. This is usually done by an
arithmetic encoder. For a binary arithmetic encoder we know that the
maximum overhead (redundancy) will be less than 2 bits for any length
of the source sequence, provided that the numerical precision problem in
arithmetic coding can be ignored, e.g., see [WST95]. This will be further
explained later in this chapter.

Derived from the general description in Figure 2.1, we propose the gen-
eral lossless image compression scheme in Figure 2.2.

The conceptual principle for almost all lossless image compression schem-
es is based on four main components (see Figure 2.2): Firstly, convert the
2-dimensional image into a 1-dimensional string (source with serializer).
Secondly, pre-process the data. This is mainly done to simplify the last

2Depending on the encoder the output may be either a single code word or several code
words. However, we will often consider the output as a single code word.
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Image
source
|
Serializer
| |
Context
Context Prediction/
builder Transformer
Context
A Y Y
Context Probability Arithmetic Code
modeler distribution encoder word

Figure 2.2: A general image compression scheme. Each gray box in this figure
corresponds to one box in the basic lossless data compression scheme in Fig-

ure 2.1.



2.1 Source Coding & Image Compression

two components (prediction/transformer). Thirdly, assign a probability
distribution for each pre-processed data symbol to be encoded (context
builder/context modeler). Finally, the code word is constructed from the
pre-processed data and probability distribution (arithmetic encoder).
Some comments to the general scheme: It should be noted that the choice
of serializer, pre-processor, and probability assignment function must be
done in a combined process since the individual components are not in-
dependent of each other. If one of them is changed the performance of
the others will be affected. It should also be noted that from an imple-
mentation perspective the scheme may look different.

2.1.3 Some Basic Concepts in Lossless Data Compres-
sion

From information theory (see e.g., [CT91]) we know that the self-infor-
mation I(A) about an event A depends on the probability P(A) for that
event as

I(A) = —log P(A), (2.3)

where log is the two-logarithm? and the self-information is measured in
bits. In data compression we are interested in describing the informa-
tion and removing the redundancy from the data. In order to do this
the probability for the data (or event) has to be determined, directly or
indirectly. In our setting according to Figure 2.1 we determine the prob-
ability distribution according to some kind of statistical model.

The following main definitions are basic concepts throughout this thesis.

Definition 2.2 (Ideal Codeword Length):
The ideal codeword length (in bits) for a message m with known proba-
bility of occurring P(m) is defined as:

—log P(m). (2.4)
|

In general it is not possible to encode according to the ideal codeword
length. But through binary arithmetic encoding (e.g., [Pas76], [RM89],
[Jon81], [BCW90]) it is theoretically possible to encode with an overhead
of not more than 2 bits. The bound comes from the fact that it is pos-
sible to construct a binary prefix-free codeword with length w such that
w = [—logP(m)] + 1. This is discussed in the mentioned references
on arithmetic encoding and is also described in [CT91] along with the
Shannon-Fano coding. Arithmetic coding is derived from the Shannon-
Fano coding.

3The two-logarithm, logs, is used throughout this thesis.
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For measuring the compression performance with respect to theoreti-
cal limits some definitions of redundancy are necessary. The message
m = [my,my, ..., my,] consists of n symbols from the source alphabet M.
Finally, S € S denotes the source in a class of sources S, Ps(S) denotes
the probability for source S in the class, and Ps(0) denotes the proba-
bility distribution for the parameter vector 8 associated with source S.
In the following Ps(m) and Ps(m) denote the used coding probability
distributions for which we would like to calculate the redundancy. With
Ps(m) we refer to the case when the source S is known and with Ps(m)
only the class of sources S is known.

In the following code is the description of how to map source messages,
m, onto code words.

Definition 2.3:

For a code with code word lengths for the input messages according to
the code word length function Lg(m|0) for the source S with known pa-
rameter vector @ the individual redundancy is defined as:

ps(m|@) = L(m]|8) + log Ps(m|@). (2.5)

Sometimes we use the notation coding probability, 15() This is the dis-
tribution corresponding to the code word length function, L(-), i.e., in the
above definition the corresponding coding probability is:

Ps(m|@) = ¢~ Ls(ml6) (2.6)

where C is the code word alphabet size. From the Kraft inequality
(see [CT91]) we know that it for any uniquely decodable code:

> Ps(m|6) < 1. 2.7

Thus Ps(-) may not sum up to 1. Although Ps(-) does not necessarily form
a probability distribution we will still denote it as coding probability.
From the individual redundancy for a single message we define the av-
erage over all messages according to:

Definition 2.4:
The average individual redundancy per source symbol for a code is de-
fined as:

ps(6) = = 3" Ps(ml0)ps(ml6). 28)
meM™
|



2.1 Source Coding & Image Compression

We will in the sequel not focus much on the redundancy for the code
construction since we will use arithmetic coding except when otherwise
stated. The main concern will be the statistical modeling and thus the
probability assignment. For the PA we will use the following definition
to measure the performance:

Definition 2.5:

The average redundancy per source symbol for a probability assignment
or estimation function for which the parameter vector is not known is
defined as:

ﬁ5(0)=% 3" Ps(m|6)(~log Ps(m) +log Ps(m}h)).  (2.9)

meM™
|

Definition 2.6:

The average redundancy per source symbol for a probability assignment
or estimation function for which the source and associated parameter
vector are not known is defined as:

[)5(5,0):% S Ps(mlS,0)(~ log Ps(m) + log Ps(m|S,6)).  (2.10)

meMn
|

Definition 2.7:

The average parameter redundancy per source symbol for a probability
assignment/estimation function for which the parameter vector is not
known is defined as:

ps = / Ps(6)ps(6)db. 2.11)
6cOg

Definition 2.8:

The average parameter redundancy per source symbol for a probability
assignment/estimation function for which the source and corresponding
parameter vectors are not known is defined as:

ps =3 Ps(S) / Ps(8)75(S, 0)d6. (2.12)

ses 0€®s
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Definition 2.9:
The worst case redundancy for an individual sequence for a specific source
S is defined:

ps(m) = —log Ps(m) + sup log Ps(m]|@). (2.13)
6€Os

||
Definition 2.10:

The worst case redundancy for an individual sequence for a class of sour-
ces S is defined as:

ps(m) = —log Ps(m ) +max sup log Ps(m|6). (2.14)
SES gcog

We will later, were applicable, divide the redundancy into two parts, a
source description cost and a parameter description cost.

When considering sequences the following definition is useful:
Definition 2.11 (Block Probability):

For a sequence x" = [z1, %2, -, Zy], ; € A, where A is a finite alphabet,
of symbols with known probability distribution function P(-) with known
parameter vector @ the block probability is defined as:

(x"]0) = HP i|xi7L, 0). (2.15)

One important technique when coding data from a source with unknown
parameter vector is weighting. To make a weighted distribution the block
probability is used:

Definition 2.12 (Weighted Block Probability):

For a vector of ¢ parameter vectors © = [01, 0>, ..., 0], where the param-
eter vectors 0; = [01,60,...,0;] have k scalar parameters, and a sequence
x™ the weighted block probability is defined as:

q

where ¢; > 0 are weighting coefficients, and 7 ; ¢; = 1. [ ]

The weighted block probability is a useful concept when coding sources
with unknown parameters:



2.1 Source Coding & Image Compression

Example 2.1:
A binary memoryless source, S, generates its symbols, {a, b}, according
to either one of two different distributions, P; or P»:

P | B
a | 3/10 | 9/10
b | 7/10 | 1/10

We further know that S generates symbols according to P; with proba-
bility ;.

By Definition 2.12 we get the weighted block probability for the sequence
X" = [21,%2,..., 0], i € {a,b},i € {1,2,...,n}:

P, (x") = %le(x,.) + %HPQ(@). (2.17)
i=1 i=1

If a sequence starts with baa the probability distribution for the next
symbol can from the weighting technique be found as:

P, (baaa)
p = ——— 0. 2.18
(albaa) Py (baa) 0.6375, ( )
P(blbaa) = 1— P(a|baa) = 0.3625. (2.19)
We note that the distribution matches neither P, nor P;. [ |

By calculating the weighted block probability as in Example 2.1 it is
possible to asymptotically encode the source data with an arithmetic en-
coder* with an average rate equal to the entropy without knowing the
actual parameter of the source. Another approach would be to guess the
source parameter, i.e., for each symbol to be encoded make a (reasonable)
guess of which one of the two sources has generated the sequence so far
and encode according to that parameter.

Example 2.2 (Example 2.1 continued):
For the same source as in Example 2.1 we use the following simple
scheme to guess the parameter of the source:

e If n, > n; then assume P,
e Otherwise assume P,

where n, denotes the number of ¢’s seen so far and n; the corresponding
number for b. By using the guessing scheme we find that:

P(albaa) = 9/10,
P(blbaa) = 1/10.

4Again we are ignoring any numerical problems in the arithmetic encoder.
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| Sequence | Weighting | Guessing |

[aaa [0.378 [0.729 |
aab 0.072 0.081
aba 0.072 0.081
baa 0.072 0.027
abb 0.078 0.009
bab 0.078 0.003
bba 0.078 0.021
[ bbb [0.172 [0.049 |

Table 2.1: Comparison between a weighting technique and a “guessing” scheme
according to Example 2.2. In the table the individual redundancy in bits is shown
for all possible sequences of length 3.

We finish this example by comparing the two schemes for all possible
sequences of length 3 in Table 2.1. We conclude from the table that the
weighting technique is sequence order independent® and that the guess-
ing scheme is not. The fact that the sequence order changes the redun-
dancy may be an undesirable property. With weighting techniques we
have a controlled way of administrating the redundancy. We also con-
clude that the average redundancy per message, ps(#), in this example
should for any sequence length be less than or equal to 1 bit, i.e., one bit
is required to describe which one of the two sources that is used since
they appear with equal probability. This is obvious for the weighting
technique since

1 n
—log P, (x") < _10g§HPj($z’)

i=1

= 1-log[] Pi(xs), (2.20)

i=1
for both j = 1, and j = 2. But for the guessing scheme the redundancy
could be much larger in the worst case.

Example 2.3 (Example 2.2 continued):
We start by calculating the average redundancy for each of the two tech-

5Meaning that if s is a sequence and II(-) is a permutation of its symbols, it holds that
Py (s) = Py(II(s)) for all permutations II(-).
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niques and get:
Weighting: ps(7/10) = 0.201 bit/source symbol, (2.21)
Weighting: ps(1/10) = 0.213 bit/source symbol, (2.22)
Guessing: ps(7/10) = 0.899 bit/source symbol, (2.23)
Guessing: ps(1/10) = 0.042 bit/source symbol. (2.24)

Since the total redundancy should not be more than 1 bit, i.e., % bit/source
symbol, the guessing scheme fails in the worst case.
Considering the average over the parameters we get:

Weighting: ps =~ 0.208 bit/source symbol, (2.25)
Guessing: ps =~ 0.470 bit/source symbol. (2.26)

From the above discussion we conclude that for the guessing scheme the
total description cost of the parameter is higher than the desired 1 bit.
Finally, we calculate the worst case redundancy for the sequence [bab]:

Weighting: ps([bab]) =~ 0.914 bits, (2.27)
Guessing: ps([badb]) =~ 5.615 bits. (2.28)

For the worst case redundancy it should also hold that the redundancy
is less than 1 bit. n

In order to keep the different techniques apart we say that the weight-
ing technique uses a probability assignment technique and the guessing
scheme is an adaptive technique.

This section about some basic concepts in lossless data compression ends
with an important definition for sets:

Definition 2.13:

A set of sequences X = {x;,Xs,...,X5,} is said to be prefix-free if no
sequence x; is a prefix to any other sequence x; with ¢ # j and 4,j €
{1,2,...,m}.

The set X C A™* is complete if for all sequences y € A" there exists an i
such that x; is a prefix to y, where A™ = (J;_, A*. [ ]

2.2 Context Tree Modeling

This section concerns the context modeling and context building in the
generic scheme, see Figure 2.2. The motivation for using context model-
ing in image compression is to take advantage of the correlation between
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adjacent pixels. We come back to this in more detail in Section 2.6. Con-
text modeling, used together with a prediction scheme and other prepro-
cessing, may not have an intuitively natural approach. The intention of
preprocessing is to reduce the complexity of the data. But, as was shown
in [FM92], no prediction scheme will achieve total de-correlation, and
thus a context model is necessary to utilize the remaining correlation.
This will be studied further in Section 2.4.

Much of the contents in this section is inspired by the work of Rissa-
nen on the Algorithm CONTEXT [Ris83] and, primarily, by the excellent
work of Willems, Shtarkov and Tjalkens on the Context Tree Weight-
ing Method [WST93] and [WST95]. An introduction to these algorithms
along with possible extensions for applications in lossless image com-
pression will be presented in this section.

2.2.1 Context Tree - Basics

To avoid confusion with other definitions used in the literature we define
a context tree as follows, see also Figure 2.3.

Figure 2.3: An example of a context tree.

Definition 2.14 (GMCT-f):
For a complete and prefix-free set of M-ary strings:

D
TcJ{o,1,..., M -1}, (2.29)

=0
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a general M-ary context tree is defined as:
T ={c0]:ceT}, (2.30)

which is a set of parameter vectors 6. along with a description of the
position in the tree. The parameter vectors apply to a memoryless prob-
ability distribution function f(-|6.), i.e., given a (long enough) context, a
probability distribution will be found in the context tree. The maximum
length D is fixed and limited. The tree type is denoted GMCT-f. |

The fact that the set 7 is prefix-free makes it natural to regard each
element of 7 as a leaf in a tree. Since the set 7 is complete there will be
no context that does not point out a leaf in the tree. From the definition
a source may be constructed. A context tree source will from a given
context generate a source symbol according to the distribution given by
the distribution function and the parameter vector corresponding to the
prefix of the context that is an element in 7, i.e., a leaf in the context
tree.

The FSMX source was defined by Rissanen in [Ris83]. The FSMX source
is a special case of the more general GMCT-f in that the FSMX source will
use the same alphabet for both the source and the context. The context is
determined by the previous source symbols. For the FSMX source it also
holds that it can be modeled by a Markov source (finite state machine).
A similar construction to the GMCT-f is a corresponding context model:

Definition 2.15 (GMCM-f):

A General M-ary Context Model is a GMCT without the requirement that
T is prefix-free. The parameter for a context is found according to the
longest matching string in 7. |

The nodes in a context model, in contrast to a context tree, may therefore
not necessarily be fully extended with all possible sons.

To visualize the difference between GMCT-f and GMCM-f we will look at
an example:

Example 2.4 (GMCT-f vs GMCM-f):

For a binary probability distribution f(:|d), where 6 denotes the proba-
bility for symbol 0, and M = 3, we have the following, see also Figure 2.4
and 2.5:

e a GMCT-f tree:
Tt = { [0700]’ [1701]7 [207020]7 [217021], [22;022] }7

e a GMCM-f tree:
Tm = { [0)00]’ [1701]7 [2;02], [205020]3 [21;021]7 [220;0220] }-
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Given the context 220777 - - -6 we will get the probability distribution:

P(0[220727--2) = 6y, (2.31)
for T; and
P(0]220727---) = 6490, (2.33)

for T,,. For context 221777 - - - we get the parameter 65, for T; and 6§, for
T ]

Figure 2.4: The context tree T; in Example 2.4.

In order to describe a context tree source it is necessary and sufficient to
describe the context tree 7 with its parameter vectors in 7. In [Ris84]
a lower bound for universal coding was given. Applied to a context tree
source 7 with source alphabet size m and the parameter vectors 8. =
[61,02,...,0m_1,1— E:Sl 0;], c € T we get the following theorem:

6The question marks, “?”, denote unknown (arbitrary) symbols.
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Figure 2.5: The context model T}, in Example 2.4.
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Theorem 2.16 (Universal Coding of Context Tree Sources):

For coding of a sequence of length n, with corresponding contexts, from a
context tree source T, with known leaves 7 with unknown parameters,
and with source output alphabet size m, it holds, for all ¢ > 0, that the
average redundancy

[T1(m — 1) logn

ﬁTZ(]-_e) 2 n

(2.35)
for all parameter vectors in 7', except for a small set whose volume goes
to zero as n — oo. O

This important theorem was proved in [Ris84] (although, it was slightly
different formulated). In [Sme96] this theorem is called Rissanen’s Con-
verse.

The description cost for describing the tree (tree description cost) is pos-
sible to make constant, i.e., independent of n. How this is done will be
shown the in following sections. For the GMCT-f, the source alphabet
does not affect the redundancy in the same way:

Corollary 2.17:

For the same conditions as in Theorem 2.16 with a GMCT-f source with
f(-) having a parameterization with 7 independent real valued parame-
ters the average redundancy fulfills

| T |Mmin logn

pr > (1—¢) 5 .

) (2.36)
where m;;;, = min(m — 1,70). O
The corollary follows from Theorem 2.16. It is (presumably) easy to find

a parameterization where 7 > m — 1. But we would actually like to find
the parameterization with the fewest parameters since:

Corollary 2.18:

For the same conditions as in Corollary 2.17 and with two different pa-
rameterizations with /m; and M, independent real valued parameters
respectively, it holds:

|T|mmzn IOg n
2 n ’

pr > (1—e¢) (2.37)
where m,;;, = min (1, 1M2). O

However, finding the parameterization with a minimal number of pa-
rameters may be hard to determine.
When a tree only consists of the root node it is a memoryless source:
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Corollary 2.19:
Under the same conditions as in Theorem 2.16 and Corollary 2.17 we get
for a memoryless source:

(2.38)

O

Since Theorem 2.16 and Corollaries 2.17 and 2.19 only tell us how well
it is possible to perform, we make the following definition which will be
used as a goal in the sequel:

Definition 2.20:

A probability assignment (PA) function for memoryless sources is asymp-

totically optimal with respect to average redundancy if the following holds

for some N > 0:

Mmin IOg n CVPA
2 n n’

where Cp4 is a constant. In the same way, a PA-function is asymptot-

ically optimal, with respect to average redundancy, for a context tree

source T', where no context in the tree 7 appear with probability 0, if the

following holds:

5 < Vn > N, (2.39)

oy < Tlmminlogn | [T|Cra o (2.40)
2 n n
and when the tree structure is unknown:
in 1
pr < Tmminlogn | 1T1Cpa | OT =y 5 (2.41)
2 n n n

where C'r is a constant which depends on the actual tree structure 7. B
For clarity some additional definitions will be made:

Definition 2.21 (Nodes and Leaves):

For a tree T: L(T) £ T denotes the set of leaves, L£4(T') the set of leaves
at depth d and A (T) the set of nodes or the set of all possible prefixes to
T. [ |

Definition 2.22 (MDL-Context Tree):

The Minimum Description Length (MDL) Context Tree for a sequence is
the context tree that, including tree description and parameter descrip-
tion costs, has the shortest corresponding codeword. The MDL-context
tree may not be unique. |

The definition of MDL was introduced in [Ris78]. Definition 2.22 is an
extension applied to context trees, see also [Noh94].

In the sequel of this chapter sequential algorithms for estimation of un-
known context trees with unknown parameters will be studied.
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2.2.2 Algorithm CONTEXT

The Algorithm CONTEXT (AC) was first presented in [Ris83]. In e.g.,
[Noh94] applications to image compression were investigated. The most
promising results for use on images where presented in [WRA96]. The
following description will follow the latter reference.

The main idea of AC is to encode each symbol according to the so far
“best” context model. This is done by comparing different context mod-
els by measuring the performance when test expansion/contraction of
leaves are made in the context tree. The algorithm is therefore an adap-
tive algorithm that can be proven (e.g., see [Ris83], [Noh94]) to perform
asymptotically optimal for context tree sources.

Algorithm 2.1 (Algorithm CONTEXT):

The algorithm CONTEXT uses a dynamic tree where each node, i, has an
adaptive probability assignment function, P(z|6;), an efficiency variable,
E;, and a counter, n;. It is the estimate of the parameter vector 6; that is
determined adaptively (e.g., by the Dirichlet estimator that is described

in Section 2.5.1). Initially E; = 0, n; = 0, and nrpresnoiq is a preselected
threshold.

» Set the constants b; and by, which are used as thresholds for a for-
getting function when updating the efficiency variables.

» Initialize the tree with the root node.

» For each symbol to be encoded along with a corresponding context
do the following:

> Find the node along the context with E; < 0, that is most dis-
tant from the root node, and where all nodes on the path to the
root have efficiency variables less than 0. Use P(z|6;) in the
found node for coding the symbol.

> Update every node along the context from leaf to root.

> If, in the leaf node i, it holds that n; > nrpresnoia then expand
the tree by adding new leaves to the previous leaf. Update the
new leaf in the context.

» In order to update a node the following steps are carried out:

>E; =w (EZ + log %) , where j corresponds to the father of
1, and
by, ifz > bh,
w(x)=¢ = b <z < by,

b ifz <b.
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> Update 0; according to the new symbol.
>n;i=n;+1

The original algorithm was proven in [Ris83] to be asymptotically opti-
mal in terms of average redundancy for context tree sources. The main
theorem of the [Ris83]-paper actually says that the algorithm works for
any stationary ergodic source. It therefore holds for both FSMX and
Markov sources. However, the algorithm does not, in the case when
M > 2 necessarily find a context tree but a context model, i.e., not all
inner nodes are fully extended. But this does not affect the final result
of the algorithm. According to our definition of GMCM (Definition 2.15),
Algorithm 2.1 will not find the context model of a source for all context
model sources since there is a dependence between each node and its fa-
ther and sons in the algorithm. Instead the algorithm will find a model
that is an approximation of a GMCM with an over-fitted context model.

2.2.3 The Context Tree Weighting Algorithm

In this section follows a presentation of the basic algorithm of the Con-
text Tree Weighting (CTW) algorithm along with some useful extensions.
The main results of the CTW algorithm will also be presented”.

The CTW algorithm does not, in contrast to AC, try to estimate the best
context tree for each symbol to be encoded. The approach is to use a
probability assignment technique via weighting. Consider the following
example:

Example 2.5:
Consider all possible binary context trees with maximum depth 2 as
shown in Figure 2.6.

Y Yy

Figure 2.6: All possible binary context trees of maximum depth 2.

For each tree the probability estimation/assignment is done in the leaves.
Thus we have the following block probabilities for each tree (where A

7At the time of the writing of this thesis there is a web page [Wil97] describing the
historical background of the CTW algorithm.
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denotes the empty string corresponding to the root node):

P = P (2.42)
P, = PP} (2.43)
P, = PYpYpl (2.44)
P, = pXpiplopl, (2.45)
P, = POPMpPM, (2.46)

where P? is the block probability for the probability assignment for the
sequence in leaf s. By weighting the different trees with an associated
weight, c¢;, we get:

5
P, = Zc,.p,.: (2.47)
=1
1)\101101011100011100011011
= ipe +§P€Pe +§P6Pe P! Jrgpe PO P! +§P6 potplopit,

The coefficients, ¢;, in the example are chosen in a special way: ¢; =
2-17i where |z;| is the number of nodes and leaves in the tree i which are
not at maximum depth. This choice of coefficients has both the property
that > ¢; = 1 and that —logc; will correspond to a description cost for
the tree i. The following algorithm is a simple way of describing a tree:

Algorithm 2.2 (Context Tree Description):
For an M-ary context tree with maximum depth d,,,, < d, run the fol-
lowing procedure starting with the root node:

» PROCEDURE Tree (node)
» IF node on a depth less than a predefined threshold d THEN

> IF node is a leaf THEN
e output the code symbol 0
> ELSE

e output the code symbol 1

¢ F'ORi=1TO M DO
o Tree (son M)

e END FOR
> END IF
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» END IF
» END PROCEDURE

|

It is obvious that the description cost for a tree T" with this algorithm will
be:

lxr| = N(D)| + |L(T)| = |£a(T), (2.48)

and in general it could also be formulated as:

Theorem 2.23:
For the output sequence xr, from the Algorithm 2.2, with the M-ary tree
T as input, it holds that:

_ ML) -1

x| T (2.49)

O

Proof: The total number of bits required are |[N(T)| + |L(T)| — |La(T)|,
i.e., one bit for each node and leaf except for those leaves on maximum
depth.

Since the tree is complete we know that the number of leaves can be

determined as a function of the inner number of nodes as: |L(T)| =
IN(T)|(M —1) — 1. Thus,

Ixr| = [N(T)|+|L(T) - |La(T)] (2.50)
_ L) -1
= T -1 + |£(T)| — |,Cd(T)| (2.51)
_ MLT)| -1
= 71 — |La(T)| (2.52)
|

By comparing the tree description cost in Theorem 2.23 with the coef-
ficients in Example 2.5 it is possible to see the connection between the
two. More formally we define the context tree weighting as:

Definition 2.24 (Context Tree Weighting):
The weighted block probability is defined as

Po=> e [[ P, (2.53)
TEQq teL(T)

where Qg is the set of all possible context trees with maximum depth
less than or equal to d and ¢ = 2-*7| where x7 is the output from
Algorithm 2.2. |
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In [WST95] a binary tree with binary alphabet was considered. As bi-
nary estimator the Dirichlet estimator (which is defined and analyzed in
Section 2.5.1) was used. For this case the following was proved:

Theorem 2.25 ([WST95]):
For all sequences x™ of length n it holds for (2.53) with the Dirichlet
estimator that:

puux") < —loger + (T (pr), 254)
where f
z ifo<z<1,
" { slog(z) +1 ifz>1, (2.55)

and 7' is the MDL-tree, i.e.,

— ¢
T' = arg 7Ip€a§( (cT H Pe>, (2.56)

¢ teL(T)

and S, is the set of possible tree sources of maximum depth less than or
equal to d. O

When considering the average redundancy and a source based on a GMCT-
f we state the following:

Theorem 2.26:

For a CTW-scheme, using an asymptotically optimal probability assign-
ment function PA, with respect to average redundancy, and for any source
with tree structure 7 we state the following:

a) Under the same conditions as in Theorem 2.16 it holds:

pr(n) > (1 - G)M logn, (2.57)
2n
when n — oo and any € > 0.
b) For some N > 0 it holds:
1 min
pr(n) < - (% log(n) +|T|Cpa — 10g07-> , ¥Yn>N, (2.58)

where Cp4 is a constant dependent on the PA-function.

O

Proof:
Part a) of the theorem follows directly from Theorem 2.16 and Corol-
lary 2.17.
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Part b) of the theorem is derived by observing that:

1
= / Pr(6)— E Pr(m|0) — log P, (m) + log P7(m|0)do
0cOr n meMn

_ / Pr(6) > Pr(m|0)log Pr(m|6) —log > coP%(m)do
6coOr meMn QEQq

S Pr(ml6)(log Pr(m|6) — log(er P (m)))do
meM™

Pr(0)

6cOr n

= —(=loger +r(n)))
n (Tb

n gn+|T|Cpa —log CT) ; (2.59)

where P] =[], c(n Pe and

r(n) =

= [ Pr(6) = Pr(ml6)(1og Pr(ml6) - log(P (m)))ds
0cOr memMn

/ Pr(®) S Pr(ml|6)(log Pr(m|0) —log( [[ P)do
0cor memn teL(T)

/.. Pr® ( > m(e)) a0

teL(T)

/ Pr () ( > mg”'” lognt+CpA> de
0cOT

teL(T)

= Z m;nm logng + Cpa
teL(T)

< |T|

IN

Mmin

2

logn + |T|Cpa, (2.60)

where n; is the number of observations and p; (6) the average redundancy
in node ¢. The second last inequality follows directly from Definition 2.20
for asymptotically optimal probability assignment together with the def-
inition for average redundancy. [ ]
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The computational complexity of calculating the weighted probability ac-
cording to Definition 2.24 is not feasible for practical purposes because
of the rapidly growing number of possible trees. The number of possible
M-ary trees of depth less than or equal to D can recursively be calculated
as:

X(D)=14+XM(D -1), (2.61)

where D is the maximum depth and X (0) = 1. This function grows as:
X (D) >2M ”~" . In order to solve the problem of the exploding number of
terms in the weighting efficiently the following algorithm was presented
in [WST93]:

Algorithm 2.3 (CTW):

Start by constructing a tree with maximum depth d and where each node
(or leaf) s initially has an estimated probability P’ = 1 and a weighted
probability P? = 1.

» For each symbol z to be encoded with context c update the tree from
the leaf node pointed out by ¢ to the root node according to:

> Update P? := P?Pyssign(z]s).
> Update Pg := & (P? + P3' P2 ... P:M) if s is a node and P? :=
P? if s is a leaf.

> Update the probability assignment function.

The output from the algorithm is the weighted probability in the root
node, P). [ |
The algorithm updates O(d) nodes for each symbol to be encoded com-
pared to O(X(d)) (Equation 2.61) terms in Equation 2.53. To get the
conditional probability for the next symbol from the CTW-algorithm a
test update for each possible source symbol can be performed.

A related weighting method for context tree sources with (almost) arbi-
trary weights, i.e., choosing ¢ in Equation 2.53 arbitrary, was presented
in [Suz95]. The basis for the method is that the weighted probability is
updated according to:

Py = B(s)P! + (1 - B(s) P P2 - PIM, 2.62)

where 0 < 3(s) < 1 denotes the a priori probability that s will be a leaf
compared to being an inner node given that s will be in the tree. The
weights ¢ can not be really arbitrary since:

cr = H (1—3(s)) H B(s). (2.63)

sEN(T) s€L(T)NL4(T)
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In conclusion we note that with the presented weighting techniques the
cost or redundancy for describing a tree depends on the size of the tree
and not on the sequence length. This means that the algorithm is asymp-
totically optimal with respect to the average redundancy.
After a sequence has been processed by the CTW-algorithm it is possible
to find the MDL-context tree from the updated CTW-tree:

Algorithm 2.4 (CTW-MDL):
Recursively do the following, starting with the root node:

» PROCEDURE MDL (s)
» IF s is a leaf THEN
> P; = P}
> I° :=yes
» ELSE
> FOR{=1TO MDO
e MDL (s%)
> END FOR
> p:= Pslps?...psM
> IF B(s)P: > (1 - A(s))p THEN
o P5 := f(s)P?

e [° :=yes
e (remove all sons with subtrees)
> ELSE
o P = (1—(s))p
e [ :=no
> END IF
» END IF

» END PROCEDURE

The output of the algorithm is the context tree with each node marked
with I’ denoting whether the node is a possible leaf in the MDL-tree or
not. The MDL-tree is the largest® tree where all nodes and leaves have
I? =yes.

|

8With “largest” we refer to the tree with most number of nodes.
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An important aspect when considering the CTW algorithm is to find the
actual tree and parameter description costs. Since the CTW algorithm
doesn’t describe a single context tree no unique cost can be found. We
will, however, estimate the tree and parameter description costs in two
steps from the MDL-tree:

Algorithm 2.5 (Tree & Parameter Description Costs):
From the final updated CTW-tree, execute Algorithm 2.4 to get the MDL-
tree then do the following:

» In the MDL-tree; set 8; = 0 if s is a node and 3, = 1 if s is a leaf.
Recalculate the MDL-tree and recalculated P\ denotes the block
probability for the MDL-tree without the tree description cost.

» For each leaf recalculate the assigned block probability P? with the
“known” (i.e., best) parameters. Recalculate the MDL-tree. Then
P) denotes the block probability for the MDL-tree without both
tree and parameter description costs.

A similar method to find the MDL-tree online is the Context Tree Max-
imizing Method, e.g., see [VW95]. However, this method does not nec-
essarily work for GMCT-f when the f-function is arbitrary or when ex-
tensions are applied (e.g., see Section 2.2.5). The method presented in
the [VW95] was only considering a binary tree with binary alphabet.
While using a Dirichlet estimator, it is possible to find the MDL-tree in
an online algorithm. One of the nice properties shown in [VW95] with
the CTW maximizing method was that it is possible to reduce the tree
description cost as described in Algorithm 2.2. This reveals that it is
possible to improve the bounds in Theorem 2.25 and Theorem 2.26.
Finally, an extension to the CTW algorithm will be made for applications
on images. Since the images are bounded in a 2-dimensional rectangle
the pixels on the boundary will lack some of the context pixels. This can
be solved by extending each node with an additional parameter P, which
is a substitute for the updating of the sons. The following algorithm
is basically the same as the CTW-algorithm but with the extension for
missing contexts:

Algorithm 2.6 (CTW with missing contexts):

Start by constructing a tree with maximum depth d and where each node
(or leaf) s initially has a estimated probability P’ = 1, a “cut” probability
P? =1 and a weighted probability P = 1.
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» For each symbol x to be encoded update the tree from the leaf node
or the last node in the available context to the root node according
to:

> Update P? := PSP, s559n(x|s).

> If node s is the last node in the available context update P? :=
P? Pogsign(z]s).

> If s is a node update P2 := B(s)P? + (1 —B(s))P: P P22 ... psM
or update P} := P? if s is a leaf.

> Update the probability assignment function.

The output from the algorithm is the weighted probability in the root
node, P). [ ]
The probability P, is therefore a substitute for not updating any further
down in the tree. This could be seen as updating according to one path
from the cut-node with the same probability for each node. The differ-
ence is that the probability assignment functions will not be updated on
greater depth in the tree.

2.2.4 The P-Context Algorithm

In [WS97] Weinberger and Seroussi introduced the concept of permuta-
tion minimal trees. The basic idea originates from applications in image
compression and concerns a reduction of the parameter description cost.
The idea is as follows: Given a tree source, consider all combinations of
permutations of the alphabets in the leaves on a maximal depth D and
their corresponding minimal tree. The minimal tree is found by merging
all sibling leaves with equal parameter vectors. Since only tree sources
are considered it is required that all siblings with the same father have
the same parameter vector in order to make the merging. The smallest
minimal tree is referred to as the permutation minimal tree.

The gain in finding the permutation minimal tree is that we will reduce
the number of parameters to describe and in a restricted sense we will
have a minimal number of parameters to describe. From Theorem 2.16
we know that the asymptotic parameter description cost, p1(8), for a tree
source with k leaves is bounded by

k(m —1)

pr(0) > (1 —¢) logn, (2.64)
2n

where m is the alphabet-size and n is the length of the sequence.

The traditional way of reducing the number of parameters is by pre-

diction, e.g., see [TJR85], [ES96]. Although prediction gives very good
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compression results, when, for example, combined with a universal en-
coding procedure as in Figure 2.2, it is not very appealing from a the-
oretical point of view. In particular, it is not clear why we should use
the above mentioned two different model tools on the same information.
The P-Context algorithm was introduced as a way to investigate this
problem and to investigate how prediction and universal coding interact.
However, the drawback with permutation minimal trees used in the P-
context algorithm is that the actual permutation for each leaf must be
described.

Example 2.6:

A binary tree source with a binary alphabet {a, b}, see Figure 2.7, has the
following parameters: P(a|context =0) =6y = p, 010 =pand 611 =1—p.
This tree is minimal, but if the binary alphabet in leaf 11 is permuted
(i.e., a’ = band b’ = a), that leaf will get the new parameter 6'11 =p. All
other leaves will remain with unchanged parameters. With this permu-
tation we will get the minimal tree 0')\ = p. This is also the permutation
minimal tree, if we consider the permutation at depth D > 1. |

bo

Figure 2.7: An example of a binary tree source along with its corresponding per-
mutation minimal tree (D > 1) in Example 2.6. The parameters are 6y = 619 = p,
611 =1 —pand 6, = p. Observe that the permutation is done at depth D.

The algorithm P-Context, which is generalized in Figure 2.8, will asymp-
totically find, for almost all sequences, the permutation minimal tree. In
Example 2.8 it is shown when it is possible for a prediction scheme to
fail, and thus the P-Context algorithm. In [WS97] the following bound
was derived:

L B (nx)) < Hy(1) + =1

—1
- o logn +0(n™"), (2.65)
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Sequential
Context Tree
Predictor via
Ranking
i ,
Context _ | Algorithm | Prob .
data Builder Context | CONTEXT |Distr

Figure 2.8: A general P-context algorithm.

where the left hand side is the expected code word length per input sym-
bol for the tree source T with the permutation minimal tree source 7".
On the right hand side is the entropy for the permutation minimal tree
source H,(T") and k' is the number of leaves in the permutation minimal
tree. From Figure 2.8 it is obvious that any asymptotically optimal con-
text tree algorithm will have the same result as algorithm CONTEXT.
The bound does, however, not hold for all sequences which will be shown
in Example 2.8.

In [WS97] the bound (2.65) was also more accurately determined. Theo-
rem 2 from [WS97]:

Theorem 2.27 ([WS971]):

Let T be an arbitrary, ergodic tree source. The expected code length
Er (L(x")) assigned by the P-Context algorithm to sequence x" emitted
by T satisfies

logn
2n

B (L(x") < Ha(T') + Y ()
seSs’

+Oom, (2.66)

where H,,(T') denotes the per-symbol binary entropy of n-vectors emitted
by T, S’ denotes the set of leaves of the permutations-minimal tree T" of
T, a(s) is the minimum between a.—1 and the number of non-zero entries
in the probability vector p(s), and the O(n~!) term depends on 7. O

In order to describe how the P-context algorithm works and its disad-
vantages we start by analyzing the sequential prediction via ranking. In
the following algorithm RA denotes a vector with the ranking order of
the alphabet, i.e., RA[0] denotes the most (or one of the most) frequent
symbol(s) and RA[m — 1] denotes the least (or one of the least) frequent
symbol(s):
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Algorithm 2.7:
Input: Sequence x" = [z, 21, ..., Zn_1], Where z; € M and (M| =m.
Output: The rank predicted sequence X" = [Zo,%1,...,%Ln—1], Where

a?iE{O,l,...,m—l].

» Initialize the counters t[i] = 0,7 € M.

» Initialize the RA to the lexicographical sorted alphabet M. Position
0, i.e., RA[0] will be equal to the first symbol in M and RA[m — 1]
will be equal to the last symbol in M.

» FORi=0TOn —-1DO

> &; = ra(xz;), where RA[ra(z;)] = z;.

> tlx;] = t[z;] + 1.

> WHILE (ra(z;) > 0 AND t[z;] > t[RA[ra(z;) — 1]]) DO
e Swap positions ra(z;) and ra(z;) — 1 in RA.

> END WHILE

» END FOR

Example 2.7:

With Algorithm 2.7 we would like to get the rank predicted sequence
from [b,a,a,b,c,b] where the input alphabet is {a,b,c}. The result is
shown in Table 2.2. The output sequence is: [1,1,1,1,2,1]. We note that

Input RA Output
b a:0 b:0 c0 1
a b:1 a0 c0 1
a b:1 a:1 c0 1
b a2 bl cO0 1
c a2 b2 ¢0 2
b a2 b2 ¢l 1
b:3 a2 cl

Table 2.2: The rank prediction algorithm. In the RA-column the order of the
alphabet is given along with the counters for each symbol. The last row shows
the RA after the encoding of the sequence.

it is possible to continue the encoding with any input symbols and thus
it is possible to do the rank prediction online. |
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By using the sequential ranking predictor we may have trouble in the
worst case as the following example shows:

Example 2.8:

In each leaf in the Context Tree Predictor (Figure 2.8) there is a sequen-
tial ranking predictor according to Algorithm 2.7. The output after the
prediction is the index value of the input symbol from the leaf pointed
out by the context.

Suppose for a ternary tree source we have the alphabet {a,b,c}. In the
table below sample sequences occurring in some of the leaves are listed
along with their rank predicted sequence?:

a, b, c]® — [0,1,2]°,

C; baaaaa ba C]Oo — [2]00’
,a,b, b, c]® — [0,0,1,1,2]°,

a,a,b,c]® — [1,1,1,1,2]°.

As this example shows, the rank predicted sequences may not at all have
the desired properties, e.g., if the first two (or last two) sequences would
occur in sibling nodes they could not be merged although the symbol
sequences have the same symbol frequencies. |

The example demonstrates that we have a possible problem with the
worst case performance, e.g., we could get a tree expansion. If we con-
sider short sequences, this effect might show itself in an undesirable way.
Moreover, we would like to know the overhead, i.e., the size of the O(n1)
term, of the bound in (2.65). In [ES98a] it was shown how to eliminate
the sequence dependence by applying weighting techniques and an ex-
plicit bound was derived. The main theorem coincides with (2.65) and
for practical purposes a two-pass algorithm was given. The following
subsections will give the details.

A Two-pass P-Context Algorithm

We will consider a general case for tree sources where the alphabet size of
the source is m and the alphabet size for the context is M. For example
in [WRA96] and [ES98b], m=256 and M=2 was used. The prediction
tree will have the depth D and the set of all possible prediction trees is
denoted 4. The difference between the prediction trees is the alphabet
mapping in the leaves.

By using weighting along with the CTW-algorithm, we get the weighted

9a,b,c]® 2 [a,b,¢,a,b,c,a,b,c,..]
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probability for a sequence x":

1
PAx™) = i > PL(™M, (2.67)
TeA
where
Al = (m)l£o], (2.68)
|[Lp| = MP. (2.69)

For this probability assignment we state the following theorem:

Theorem 2.28:
For the weighted probability in (2.67) we have the average redundancy
(or description cost for the prediction tree, context tree and parameters),
pr, bounded by:

pr < Ppred + Petw (2.70)
n
1
< n! log — % _log(m! b 2.71
s "n <3€le og (m — a(S))' Og(m )) + PT", ( )

where a(s) is the effective alphabet-size in node s, £ the set of leaves
for the best prediction tree, i.e., the leaves at maximum depth D. The
permutation minimal tree is denoted 7’ and the average redundancy for
the CTW-algorithm is denoted pr. O

Proof: We find the best prediction tree and the set of prediction trees
that will perform equally well as:

Ap (x™) = {T €A: Pl (x") = pg;;(xn)} . (2.72)
Thus a lower bound of the weighted probability is:

Az ()] e

PA(Xn) Z |A| ctw( n)

w

(2.73)

We get the description cost for the prediction tree as the difference be-
tween the total ideal code word length and that of the best CTW-tree
without the cost for the prediction tree:

’ A
pprea(x™) = —log Py (x™) + log PL,, (x™) < log #, (2.74)
| A (x™)]

where
|Ap: (x™)| > m! H (m — a(s))! (2.75)

seL
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With pyreq(x™) solved and the bound for pr» known from Theorem 2.26
the proofis complete. |
The bound in Theorem 2.28 can be viewed as a consequence of the de-
scription of the prediction tree and the context tree along with parame-
ters. We use this fact and construct a simple two pass algorithm:

Algorithm 2.8 (Two-pass P-context):
Do the following:

» Parse the input data and find the prediction tree.

» From the counters in the prediction tree find the best context tree,
i.e., the tree with the shortest code word length including the de-
scription costs. The description of the context tree must be included
in the beginning of the code word.

» Parse the data a second time and use the prediction tree and con-
text tree found from the first scan. When new indexes arise in any
of the leaves in the prediction tree, information about the original
symbol must be sent.

We may omit the alphabet permutation description in one leaf, but if we
use an occurrence sorted alphabet, as is the case for P-Context, we will
increase the description cost from Theorem 2.28 by log M !.

Improving the P-Context Algorithm

From the bound in Theorem 2.28 we note a possible high cost for the
description of the alphabet permutations in the prediction tree. This will
have especially bad effects when considering short data sequences. To
decrease this description cost we would therefore also consider using a
smaller prediction tree. We would then have to describe both the tree
and the alphabet mapping in the leaves. In the P-Context algorithm
only the mapping had to be described. In the same manner as in (2.67)
we would like to use weighting over all possible prediction trees, B, with
all possible alphabet mappings:

PE(x" =) % > PL, M), (2.76)
zZeB Z TeAz

where )" (Z) = 1and 3(Z) > 0,VZ € B. For this probability assignment
a similar result to Theorem 2.28 can be derived:
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Theorem 2.29:
For (2.76) the redundancy, pr, is bounded by:

npr < “Prediction tree description cost”
+ “Mapping description cost”
+ “Context tree description cost”
+ “Parameter description cost”, 2.77)

where the first three terms do not depend on the sequence length, n. The
parameter cost has a logn behavior. O

A practical algorithm following this approach is a problem for future re-
search.

2.2.5 Extended Context Trees

In the general scheme in Section 2.1 the prediction and context modeling
where separated. In this section we will consider a way of extending the
context tree algorithms to take care of the prediction as well. The basic
idea was presented in [WRA96] and the following description is from
[ES98b].

From an information theoretical perspective the prediction and probabil-
ity assignment cannot be separated into independent parts since no pre-
diction scheme will (in general) accomplish total decorrelation between
the symbols. This was shown in e.g., [FM92]. In [ES98b] the notion Pre-
diction and Probability Assignment, PPA, was used for describing a func-
tion that uses a combination of prediction and probability assignment in
order to get down to a minimal number of parameters for a memoryless
source with known probability distribution function where the parame-
ters are not known. The natural extension of the CTW-algorithm is to
use PPA instead in the probability assignment function, see Figure 2.9,
and in the prediction/transformation scheme. This means that no predic-
tion scheme as in Figure 2.2 is necessary. The extension with PPA of the
CTW (or AC) algorithm does not affect its main function, i.e., providing
a universal context modeling scheme. More about PPA can be found in
Section 2.4 and 2.5.

2.3 Serializing Images

In this chapter some different approaches for serializing and context
building for images will be presented. The serializing is strongly con-
nected with the context building and the two must be constructed to-
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Figure 2.9: An extended CTW node which contains not only the probabilities
P, and P., but also an adaptive predictor and a probability assignment function,
PPA.

gether and with full knowledge of each other in order to obtain maximum
knowledge of the correlation between adjacent pixels.

In a recent paper [MNSO00] the subject of serializing images has been
investigated and the paper is a good complement to this section.

Note: In this thesis multi-resolution and successive resolution refine-
ment techniques will not be considered. For this subject see for exam-
ple [How93].

2.3.1 Methods for Serializing and Context Building

In this thesis some different scanning or serializing methods will be
investigated. But it is the belief of the author that anyone who has
tried compressing images will be able to come up with its own scanning
method. It is not possible to determine or define a best strategy since the
image data has a two-dimensional correlation which is unknown, but in
the following the objectives and goals will be made clear and some rea-
sonable solutions will be proposed.

Trying to formalize the objectives the following two goals are required
for the serializer:

e It should be possible to take advantage of the local correlation be-
tween pixels.

e It should be possible to determine a similar located context of neigh-
borhood pixels for every pixel except for pixels close to the bound-
ary.

The first requirement comes from the discussion in Section 2.6 which im-
plies that the correlation between pixels is local for most grayscale im-
ages. This may not be the case when considering for example half tone
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images. To take advantage of the local correlation in the context mod-
eling it is therefore necessary that the context can be built from neigh-
borhood pixels as close as possible. The second goal is natural since it is
important to have the same type of correlation and relations between ev-
ery position in the context. The objectives are visualized in Figure 2.10.
Note that it might be advantageous to select different kinds of context
depending on the actual data in the neighborhood. However, this subject
will not be addressed in this thesis.

Figure 2.10: When serializing an image it is important that the pixel to be
processed, x, with its neighborhood (shaded) and the context pixels, ¢, have the
same relative positions for all pixels. The formation in this picture is not possible
to use since there is no possible scanning-order to fulfill this requirement.

Raster Scan

ik

Figure 2.11: Raster scan.

The most common way of scanning images, e.g., [PM93], is simply by
taking each row of pixels from top to bottom and scan it from left to
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right, see Figure 2.11. Despite of its simplicity the method fulfills our
goals with the scanning process. The interesting part is how to select
the context from the neighborhood pixels. As shown in Figure 2.12 it is
possible to use any of the previously scanned pixels. Two questions arise:

e In what order should the neighborhood pixels be selected for the
context?

e Is the pixel order in the context independent of the actual data in
the neighborhood?

Figure 2.12: The shaded pixels are the available neighborhood pixels in raster
scan. The numbers correspond to commonly appearing ordering of the pixels
when used as a context. This ordering is based on distance to the z-point.

It was stated in [WRA96] that it would be reasonable to rank neighbor-
hood pixel bits according to:

J(d,v) = p?27, (2.78)

where d is the distance to the pixel and v is the bit position. If the pixel
value range is [0,...,m — 1] then v = 1 is the most significant bit and
v = logm is the least significant bit. The constant p depends on the
type of image. The ranking is motivated by the fact that the correlation
between pixels tends to decay exponentially with the distance. The rank-
ing function was used in [WRA96] to determine the order in which the
bits from neighborhood pixels would appear in a binary context. Note
that this ranking does not result in an unique pixel order. In [Eks96]
a slightly different scanning method was suggested where the scanning
was actually done bitplane-wise instead of pixel-wise, see Figure 2.13.
For some kind of images this method could prove useful since “forward”
bits are available in the context. The drawback is the lack of more signif-
icant bits from the neighborhood. Another “drawback” is that the generic
scheme in Figure 2.2 must be modified in the way that the transforma-
tion must be done before the serializing.
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Least significant Bitplane k Most significant

Figure 2.13: Scanning of the image on the basis of bitplanes.

From the above discussion some proposals for context selection will be
made:

Proposal 2.1 (Raster scanning):
Scanning: Raster scan.
Context selection:

¢ Pixel context: The neighborhood pixels are sorted according to dis-
tance, e.g., the order in Figure 2.12.

e Binary context: Same as the previous but the context is taken from
the individual bits in each pixel value with the least significant bit
first.

e Sorted binary context: The context bits are selected according to
the ranking function J(d,v) in (2.78).

O

From the above proposals no selection method depends on the actual
data which was one of the opening questions in Section 2.3.1.

Circular Scan

The strategy of the circular scan is the same as for raster scan as can
be seen in Figure 2.14. The context can be found in a similar way as
for raster scan, although rotated depending on the scan-direction. The
difference between circular and raster scan is the number of times dif-
ferent context positions are unavailable due to the image boundary, see
Table 2.3. The circular scan has in general more missing contexts than
raster scan except for the first context position. This may under certain
conditions be of importance. Another possible advantage is when the
circular scanning is used on images with some kind of symmetric ap-
pearance, e.g., Figure 1.1, and together with an adaptive context model
with forgetting.
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Figure 2.14: Circular scan.

Context | Raster | Circular
position || scan scan

1 h 1

2 w 2w+ 2h — 4

3 w+h 2w+ 2h — 4

4 w+ h 2w+ 2h—4

5 2h 2

6 2w 4w + 4h — 13

> 5(w+h) | 10(w + h) — 22

Table 2.3: Comparison of the unavailability of context pixels between raster and
circular scan for an image of height A and width w.
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The proposals for circular scan are the same as for raster scan except for
the scanning:

Proposal 2.2:
Same as Proposal 2.1 but with circular scan. O

Peano-Hilbert Scan

To be able to take advantage of the local correlation and also to forget
about the previously scanned and far away pixels in a simple way the
Peano-Hilbert scan, Figure 2.15, appears to be an obvious choice, see
e.g., [PR94]. The major drawbacks of this method is that it is not possible

1
L1

L
5

Figure 2.15: Peano-Hilbert scan.

to determine a similar context for all pixels and there are not as many
close neighborhood pixels as for raster or circular scan. If the mutual
relationship between adjacent pixels are not regarded this method could
prove useful since the output data could actually be considered as serial
data. From the serial data it would then be possible to apply traditional
signal processing and data compression methods.

Proposal 2.3:
Scanning: Peano-Hilbert scan.
Context selection:

e Pixel context: The context is taken directly from the serial data in
the order it appears from the Peano-Hilbert scan.

e Binary context: Same as the previous but the context is taken from
the individual bits in each pixel value with the least significant bit
first.

e Sorted binary context: The context bits are selected according to
the ranking function J(d, v) in 2.78.
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O

Note that for the sorted binary context it is necessary to actually compute
the distance to the individual pixels in the serial data stream.

2.3.2 Context Reduction Methods

In image compression, in contrast to for example text compression, the
data is usually disturbed by noise'®. The influence of the noise will be
most noticed in the context modeling where observations will be spread
out over more different paths in the context tree compared to a case
without the influence of noise. This will in its turn result in fewer ob-
servations per node and thus a higher total parameter description cost.
The possible gain with having more nodes is that each node could maybe
more accurately determine its parameters if the input data were infinite.
In Section 2.2.4 it was shown that prediction could reduce the number of
parameters. This fact was also used in [ES96] to reduce the influence of
noise by merging similar contexts together via prediction. In this section
some different methods will be presented that will reduce the length of
the context or that will merge contexts with similar characteristics to-
gether.

Context Merging via Prediction

One way of avoiding the influence of noise is to merge context with al-
most the same values together. Consider the following example:

Example 2.9:

We have the following three contexts with 4 pixel values each:
C, = [100,101,102,99],
C, = [101,102,103,100],
C; = [1,2,3,0].

The only difference between the contexts is that they have different bias.
Under some conditions these may be considered as the same context.

If we would like to perform a merging of these context we may subtract
the (discretized) average value:

C; = C;-100=[0,1,2,-1],
C, = Cy-101=[0,1,2,-1],
C; = C3-1=]0,1,2,-1],

10Although one might consider spelling errors in written text as noise.
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and all the contexts will be the same.
In many cases, however, it could be of interest to separate C’s from the
other two. |

Another way to merge similarities together via prediction is to subtract
a predicted value at each context position:

Example 2.10:
Same conditions as the previous example. For each position in the con-
text a predicted value is calculated from the neighborhood:

¢, = [101,100, 100, 102], (2.79)
the resulting context will thus be:
C1=C,—-C =[-1,1,2,-3]. (2.80)

The statistical behavior of the context values will be approximately the
same as in Example 2.14. |

Although the idea is to group similarities together in the same branches
there will also be a loss of information. Another disadvantage with the
second example is that a context model needs very long depths for some
contexts and very short depths for others. To avoid this other ideas will
be presented in the following subsections.

Context Reduction via Quantization

In Example 2.10 the context values will, for most images, be distributed
according to the DE-distribution. This will, when used together with
a context tree, result in heavy usage of contexts close around the zero
value, and almost no usage at all for the contexts far away from the zero
value. In order to make the usage more uniform and to be able to take
advantage of the few samples in the outer range there was suggested a
quantization method in [WRA96]. The idea is to do the following:

» For each context position subtract the value of the pixel to the left
of the context pixel.

» The difference value is quantized in logarithmic sized intervals,
e.g., for 8 bit data: [-255,—129], [-128,—65], [-64,—33], [-32,—17],
[-16,-9], [-8,-5], [-4,-3], [-2,-1], [0,1], [2,3], [4,7], [8,15], [16,311],
[32,63], [64,127], and [128,255].

Since there are 16 intervals we will have a four bit quantized context
value instead of the original 8. By this approach we reduce the length of
the context as well as we merge contexts that are similar and/or rarely
used.
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Context Reduction via Tree Transformations

A general approach to the context reduction problem is to have a map-
ping function that takes the original context and converts it into a new
context with some desired property. In this way it would also be possible
to have different context orderings depending on the data.

Example 2.11:
Consider a binary context tree source with binary source symbols and
the parameters {68op = p1, 001 = p2,010 = p1,011 = p2}.

By using a context mapping function that reorders the context positions
1 and 2 a universal context tree modeler would only have to estimate two
parameters instead of all four which is necessary without the mapping
function. |

In order to utilize this method with a mapping function/tree transfor-
mation requires, however, very good or full knowledge of the source. In
Section 2.2.4 one method was suggested with the P-Context algorithm.
The final result in Theorem 2.28 was that it was possible to pay a con-
stant penalty in order to reduce the number of unknown parameters. In
a general case the optimal mapping function has similarities to asking
as few questions as possible in a questionnaire.

2.3.3 Concluding Remarks About Serializing

There is no obvious way of selecting a (good) scanning method for images.
Depending on the scanning method the statistical model will change and
a comparison will be hard to evaluate. If we have a test set of images it
would be possible to evaluate different scanning methods and statistical
models on that set, but such a comparison may suffer from an unwanted
bias due to the selected test set.

We will in this thesis use raster scan when not otherwise stated. We
believe that raster scan is a reasonable method to use in combination
with for example the CTW algorithm as discussed in this section. The
main reason for this is due to the fact that the relative position of the
context symbols will be the same throughout the image and we will thus
have the same correlation between the context symbols and the observed
data.

The subject of context reduction is further studied in Chapter 4 where
an algorithm is presented that can compute a “good” context reduction.
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2.4 Prediction

In Section 2.2.4 prediction was used as a tool for reducing the number
of parameters. In Section 2.3.2 prediction was used to reduce the length
the context string and merging similar paths together. In [ES96] the
beneficial effects of prediction were shown for reducing the total number
of parameters in the context modeling.

This chapter focuses on possible prediction methods for image data and
the discrepancy between the the original data and the prediction. In
analogy with Sections 2.2.4 and 2.3.2 it is the possible parameter reduc-
tion that will be of interest.

2.4.1 Prediction — Basics

It has been shown that no prediction scheme can accomplish total decor-
relation between symbols, [FM92] and [FM94]. To show one of the main
problem occurring in image compression consider the following example:

Example 2.12:

A ternary tree source with ternary alphabet, A = {0, 1,2}, has the follow-
ing parameter vectors: T = {[0, 8o}, 1, 61], [2, 62]}, where 60 = [, 5, ],
6, =1[%,3,3], and 0, = [, &, 2], denote the symbol probabilities. As
context the previous symbol is used.

A prediction scheme with full knowledge of the tree source re-map the
tree source alphabet to a new ternary alphabet, B = {a,b,c}, according
to: a for the most probable symbol, ¢ for the least probable and b other-
wise.

The output symbols after the prediction are to be encoded by an entropy
encoder, see Figure 2.16. One possible gain with the prediction scheme is
to avoid the usage of a context model together with the entropy encoder,
e.g., Figure 2.17. In this example, however, it is necessary to have knowl-
edge of all the previous symbols in order to have an output rate equal to
the entropy of the tree source, thus a memoryless estimator could not be
used. |

Example 2.13:

The same conditions as in Example 2.12, but the tree source will have
the following parameter vectors: 6y = [, %, 5], 61 = [5, 4, 5], and
0, = [%, 11—0, %] For this source it is possible for the entropy encoder
to use the probability distribution: P(a) = &, P(b) = &, and P(c) =
% for all symbols and thus no context modeling is necessary, i.e., as in
Figure 2.16.



2.4 Prediction 53

Tree source - Arithmetic Code word )
Encoder
A
Probability
ai € A Distribution
Y
) M 1
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Figure 2.16: A combination of prediction, estimator and entropy encoder (e.g.,
arithmetic encoder) for encoding of the tree source 7T'.

»| Arithmetic | Code word
Encoder
A
Tree source | a; €A Probability
T Distribution
Context
| Modeller

Figure 2.17: A combination of context modeling and an arithmetic encoder for
encoding of the tree source T'.
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In the above examples all parameters where known and there is no pos-
sible gain in compression performance. If the tree source is unknown
and a universal context modeling scheme is to be used, it could be of ma-
jor importance to use a prediction scheme in order to reduce the number
of parameters. In Example 2.13 the number of parameters would have
been reduced from 6 to 2. In image compression it is usually possible to
find a distribution with only two parameters which is, in most applica-
tions, considerably less than the source alphabet size M.

Example 2.14:

As a simple prediction scheme for images the prediction value is the pixel
value left of the pixel to be encoded. Figure 2.18 shows the resulting
probability distribution when the prediction scheme is applied to the im-
age in Figure 1.1 which has M = 256. The typical probability distribu-

0.4

o
[
:

Probability
o
N

0.1}

-15 -10 -5 0 5 10 15
Discrepancy

—log(Probability)

-15 -10 -5 0 5 10 15
Discrepancy

Figure 2.18: The upper graph is the probability distribution of the discrepancy

between actual and predicted value when a simple prediction scheme (mode 1 for

the JPEG standard, see Table 2.4) is applied to a medical image (thorax). The
lower graph shows the negative logarithm of the probability distribution.
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tion, when as in this example a simple prediction scheme is used, tends
for medical images to be double exponential (DE)!! with the mean value
m and distribution parameter s:

fop(@) = & exp(= 2=

2.81
2s s ), >0, ( )

and for more noisy photographic pictures the typical probability distri-
bution tends to be Gaussian. The number of parameters for the double
exponential or Gaussian distributions is only 2 in contrast to the 255
parameters necessary to describe the alphabet probability distribution.

|

Some comments to Figure 2.18:

e First of all it should be noted that the DE-distribution is only an
approximation of the discrepancy.

e The variance of the distribution varies throughout the image and
therefore we will not get the expected straight lines in the right
graph in the figure.

¢ Finally, since some parts of the image contain data close to zero the
distribution will not be symmetric for this example.

However, it should be noted that the distribution is dependent of the
neighborhood pixels for the same reason as the symbols were dependent
in Example 2.12. Thus it is necessary to describe 2 parameters in each
context. Finally it is possible to describe only one parameter since most
prediction schemes will, for these symmetric distributions, have an aver-
age discrepancy (between predicted and actual value) equal to zero.
This section ends with a definition of PPA:

Definition 2.30 (Prediction and Probability Assignment):
For a class of sources S a jointly optimized function, with respect to

redundancy, of both prediction and probability assignment is denoted
PPA(S) or just PPA. [ ]

The fact that prediction and probability assignment are jointly optimized
is of major importance when adaptive algorithms are used since the two
may otherwise work against each other. Important is also that the proba-
bility assignment takes full advantage of the data according to the prob-
ability distribution after the prediction. Finally, it should be noted that
in the prediction scheme there are also parameters that will have an
associated cost.

" The notation is from [Leh91]. In, for example [Mat96], this distribution is called

two-sided exponential. In the image compression community it is often called Lapla-
cian [How93].
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2.4.2 Some Simple Predictors

In the lossless JPEG standard [PM93] a set of linear predictors are used,
see Table 2.4. In principle any of the 7 predictors or no prediction can be

i—1,5)—z(@—1,j-1)
(@(i—1,j) —ax(i—1,j-1))/2
@%J—D—xu—ly—nvz

Mode Prediction value: i(i, j)
0 0 (No prediction)

1 Z’(’L - 17.7)

3 2(i—1,5—1)

4 z(i,j — 1)+ x(i

5 z(i,j— 1)+ (z

6 z(i—1,7)+

7 z(i,j—1) +z(i—1,j

Table 2.4: The predictors in the (old) lossless JPEG. Raster scan is assumed and

upper left corner is the coordinate (0,0).

used for any symbol. But the overhead of describing log 8 = 3 bits for each
symbol may not be motivated. Another approach could be to adaptively

change the predictor according to the compression performance.

No matter which of the linear predictors is used the difference between
actual and predicted value will behave essentially as in Example 2.14.
The subtle difference between the predictors is the variance of the dis-
crepancy. The variance will depend on the correlation between the pix-
els, which may change throughout the image. In [Eks95] a technique was
presented to take care of the changing correlation by splitting the image
into similar regions. This was done by using a quad-tree scheme. This
approach was derived from [Noh94]. The method in [Eks95] was further
developed in [Eks96] where the set of predictors was also extended to be

of the more general form:

wiz(i —1,j) + woz(i,j —1) +wsz(i — 1,5 —1) + wyz(i + 1,5 — 1)

wy + W2 + w3 + wy

(2.82)

where wy, € {1,2,---,256}, k = 1,2,3,4, and > w; > 0. The coefficients
wy, were in [Eks96] updated for each pixel to be encoded according to an

pseudo optimization based on the neighborhood.

In contrast to the above linear predictors more ad hoc and empirical pre-
diction techniques have been presented. In [MRS94] a foundation for
non-linear prediction techniques was stated. In [MS95] some different,
both linear and non-linear, prediction techniques were evaluated. The
conclusion that can be made from these articles, is that a more accu-

’
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rate/precise goal must be set for the prediction schemes since the predic-
tion is not a goal by itself. The only thing that really matters is the code
word length. For the time being, the ad hoc prediction schemes rules. We
will further discuss this topic in Chapter 3.

2.4.3 Linear Prediction

As a way of finding good prediction schemes, linear prediction with real
valued coefficients has been studied in e.g., [WRA96] and [ES98b]. The
prediction, which is calculated as

T

Ti=xi1 + Z ar(Ti—1—k — Ti—1), (2.83)
k=1
where ar, € R, k =1,2,---,r, has nice mathematical properties and have

been studied intensively in signal processing and control theory. A usual
way of determining the coefficients, aj, is by minimizing the quadratic
sum of the errors between the predicted and actual values. If the pre-
diction scheme is applied on images we have noted in the previous sec-
tions that the discrepancy usually tends to be double exponentially dis-
tributed. The variance for the DE-distribution is 2s? and from statistical
theory we know that it is possible to determine an unbiased estimation
of the variance as:

n

2
1 R 1 [& )
n—1 Z(-Tz - a:,-)2 — <Z($z - il?z)) " (2.84)

i=1 i=1

which can be simplified if the average is zero:

~ . : [Z(mi - :f:i)Z‘] : (2.85)

i=1

thus the variance depends on the quadratic error between the predicted
and actual values. The continuous entropy for a DE-distributed variable
can be found to be:

* 1
—/ foe(@)log fop(x)dr =1+ w3 +logs. (2.86)

To conclude, the entropy for a DE-distributed variable will decrease with
s, 8 > 0. To minimize s, the variance must be minimized which leads to
that the quadratic error must be minimized. The same will hold if we
consider a Gaussian distribution.
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In [WRA96] the linear predictor was used together with the Algorithm
CONTEXT. The prediction coefficients were assumed to change depend-
ing on the neighborhood, and thus, it comes natural to have one predictor
for each node in the AC-tree. This was further examined in [ES98b] by
using PPA in each node of a CTW-tree. By using either of these two meth-
ods for prediction it is possible to utilize a linear prediction scheme and
also to have different prediction coefficients depending on the context.

2.5 Probability Assignment Techniques for
Memoryless Sources

For the lossless image compression in this chapter we focus on three
different kinds of statistical models for the data: binary, m-ary alpha-
bet, and double exponential. In this section we will present and analyze
different probability assignment (or code word length assignment) tech-
niques for universal coding of these different statistical models. Also,
some adaptive estimation techniques will be presented for comparison.
In order to clarify the subtle difference between assignment and estima-
tion, consider Section 2.1.3 and the following example:

Example 2.15:

A random variable X has the probability distribution fx(z|s) which de-
pends on the unknown parameter s. For online coding of the parameter
the different techniques would do the following:

e Assignment: This technique will use a coding probability distri-
bution for the next symbol, gx (2,+1|x™), which will have a redun-
dancy contribution (or parameter description cost) that matches the
a priori assignment of cost for the actual parameter. The function
9x (-) may differ from fx(-).

e Estimation: This method will estimate the parameter § that ac-
cording to some measure will be the best. The coding probability
distribution for the next symbol is therefore equal to fx (z|3).

The motivation for using assignment techniques in data compression is
that it is a powerful way of actually controlling the parameter cost for
individual sequences. With estimation techniques it is also possible to
control the parameter cost, but generally only on the average over all
possible sequences. The two techniques may in some cases actually be
the same. By using the weighting technique we will have a powerful
tool for making probability assignment with controlled redundancy. With
weighting it is also possible to get a sequence order independence.
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2.5.1 Binary Data

For binary data there is only one unknown parameter, 6. In the sequel
the following is assumed: P(1) = 6 and P(0) =1 — 6.
One way of estimating the parameter for the next symbol, ,,1, given a
past sequence, x”, is by the following a-biased estimator:

th(x")+a to(x™) + «

O = =1 , 2.87
ntt n + 2« n + 2a ( )

where to(x") denotes the number of zeroes in the sequence x™ and ¢; (x™)
the number of ones. The constant a could be chosen in different ways
and it is set according to the a-priori knowledge of the parameter distri-
bution.

Definition 2.31:
If & = 1/2in (2.87) the estimator is called the Dirichlet estimator and for
a = 1 it is called the Laplace estimator. |

One thing to note about this a-biased estimator is that it is sequence or-
der independent, which is a useful property. It could also be shown that
both the Dirichlet and Laplace estimators are the result of using weight-
ing techniques, and thus, they are not only estimators but they also fit
under the definition of probability assignment functions. An alternative
definition of the Dirichlet and Laplace estimators are therefore based on
the block probability:

1
P.(a,b) = / w(6)(1 — 6)26°do, (2.88)
[4

=0

where P,(a,b) is the block probability for a zeroes and b ones and w(9) is
the a priori probability distribution for 4. For the Dirichlet estimator the
prior is:
1
w(f) = ———, (2.89)
m/(1—0)8
and for Laplace:
w(f) = 1. (2.90)

In [KT81] it was shown that universal codes constructed from the Dirich-
let estimator are asymptotically optimal with respect to average redun-
dancy. For individual sequences we follow the presentation in [WST95]
where the following was shown:
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Theorem 2.32 ([WST95]):
For the block probability from the Dirichlet estimator, P.(a,b), it holds
for all sequences with a zeroes and b ones (a + b > 0):

%I(a, b) < Pu(a,b) < \/gl(a, D), (2.91)
where ,
1 a \* b
Iah) = =—— <a+b> (a+b) . (2.92)
O

Stated in worst case redundancy for individual sequences we get:

Corollary 2.33 ([WST95]):
For the Dirichlet estimator it holds:

ps(z(a,b)) < =log(a+b) + 1, (2.93)

DN =

where S is a binary memoryless source and xz(a,b) is an arbitrary se-
quence with a zeroes and b ones (a + b > 0). O

Proof: From Equation 2.91 we have:

Pu(a,b) > -1 a \" (2 ) (2.94)
=2 a+b \a+b a+b) ’

The worst case redundancy is:

Fs(z(a,b)) = —logPe(a,b)+log<<aL+b>a(af_b>b> (2.95)

1
< -1 2.96
S T vatt (296)
1
= 510g(a+b)+1. (2.97)
|

2.5.2 me-ary Alphabet

For m-ary alphabet coding, i.e., m > 2, it is possible to use a similar
approach as in the binary case for assigning probabilities. The Dirichlet
estimator has the following general form for arbitrary alphabet size:
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Definition 2.34 (Dirichlet Estimator):
For the Dirichlet estimator the next symbol probability for symbol a
given a past sequence x" is defined as:

to(x™) +1/2

EmTa (2.98)

P(a|x™) =

where m is the alphabet size and ¢,(x") denotes the number of occur-
rences of symbol ¢ in the sequence x". |

In correspondence to the binary case, it could also be possible to have
a general a-biased form, i.e., P(a|x") = t“r(b’_;:)mza, although the possi-
ble gain of adjusting the parameter « is hard to determine in the gen-
eral case, and may in most cases be replaced by a more specialized as-
signment techniques. However, we note that the Dirichlet estimator
for m-ary coding performs optimal in terms of average redundancy, e.g.,

see [KT81], [Sht87] and [STW95].

2.5.3 Double Exponential Data

In image compression it is often possible to model the data by a dou-
ble exponential (DE) distribution, see e.g., Example 2.14 and [WRA96].
Since the DE-data is produced as the residual between the image data
and some prediction scheme the PPA concept (Definition 2.30) becomes
useful. In this section some possible methods for probability estimation
and assignment of the DE-data will be presented.

The continuous DE-probability distribution is defined as:

fon(ald,s) = ~ exp(— 2= 21), (2.99)

2s s
where s > 0, and £ is the mean value. However, it is of interest to con-
sider the distribution for discrete data, i.e., a finite alphabet {0,1,...,m—
1}:

Definition 2.35:
A discrete probability density function, ppg, for the DE-distribution over
the finite alphabet {0,1,...,m — 1}, is defined as:

PDE($|§%8)=
S NCIER))
A=0 S fA (|2, 5)
exp(— =2 (1 — exp(2))

= exp(=2) + exp(&=2tL) — exp(l—é)_exp((;)a (2.100)
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where § =% — | %], and
z+A/2

Falald,s) = / Fou(tl, s)dt. (2.101)
t=z—A/2
||

It should also be mentioned that in LOCO-I [WSS96] a slightly different
approach was taken. Instead of the DE-distribution a two-sided geomet-
rical distribution was used:

frsa(z|8,d) = C(8,d)gl*+1 (2.102)

where

C6,d)=(1-6)/(6""¢+ 6%, (2.103)
is a normalizing factor, 0 < 0 < 1, and 0 < d < 1. This distribution is
more restricted than the suggested DE-distribution, but for applications
such as LOCO-I ([WSS96]) it will be possible to find a low complexity
solution for universal coding, see further in [MSW96].
In this section a discussion on four different methods for probability es-
timation/assignment for the DE-distribution will be made:

A. Estimation by making an unbiased estimate of the parameter s,
ie.,

1 [ = 1 [ ’
noHn) — . A)2 .
Se1(x",X™) 2(n — 1) [;(wz ;) n (;(mz xz)) )
(2.104)
and under the assumption that the mean value is 0 the estimate
simplifies to:

sea (X, &%) = \l ﬁ S (@i — ). (2.105)
i=1

B. Estimation by finding the parameter s that will have the shortest
code word length, i.e.,

Se3 (x”’ )A(") = arg Ig’l>161 {— IOg (]:[ pDE(:Ei|:E,~, S)) } . (2.106)
=
C. Assignment technique based on weighting.

D. Assignment technique based on local optimization.

In the following section some minor notes about the different techniques
will be made.
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A. Estimation 1 and 2 (e; and e3)

One of the most simple ways of estimating the parameter for the DE-
distribution is by making an unbiased estimate according to s.1 (Eq. 2.104)
or se2 (Eq. 2.105). Some of the disadvantages with these two methods
are:

e Itis an approximation since we will use a normalized discrete prob-
ability distribution ppg(-) and not a continuous infinite function.
This will be especially critical when the center value is close to ei-
ther 0 or m, i.e., the outer part of the range.

e Since the estimation is made on the parameter for each symbol to
be encoded, each symbol will be given a probability according to the
DE-function and the corresponding estimate of the parameter. In
this way there is no possible way of controlling the parameter cost,
and, the scheme will be sequence order dependent.

B. Estimation 3 (e3)

Compared to the estimations techniques 1 & 2 a more complex way of es-
timation the parameter s is by finding the parameter that will minimize
the code word length according to s.3 (Eq. 2.106). This estimation tech-
nique will have the same drawbacks as estimation techniques 1 & 2 and
it will not be as simple to calculate. However, it is possible to make an
approximation in order to find a simple solution. We start by rewriting
the expression for s.3(x™,X") = s.3:

n
ses = argmin {— log <H PoE(Ti|Zi, 8)) }

i=1

n
= argmax (H poE(Tils, 8))

i=1

n _zi—a4 _ 1
= argmax (H exp( e eXp(SD) , (2.107)

s>0 ;
i=1 d;

where

—Z; B — 1 1-4; d;
d; = exp(Tm) + exp(w) - exp(T) - exp(;), (2.108)

and §; = &;—|Z;|. The expression for s.3 due to the product of dominators,
[1d;, is infeasible to calculate. One possible solution to approximate the
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expression could be to omit the normalizing factor, i.e.,

n N n
. 1 T; — X 1 .
Se3 = a,rgrz;agg (H % exp(_%)> — E i:E . |~77z — .’L‘zl (2.109)

The approximation is worst when the center value, i.e., Z;, is close to
either of the boundaries 0 or m — 1.

C. Weighting Technique

An assignment technique for the DE-data based on weighting was pre-
sented in [ES98b]. The idea is simple, we start by considering the block
probability:

Ppr(x"|x",s) = HpDE(mz-|:2,~,s). (2.110)
i=1
From the block probability the weighted block probability is defined as:
Pypr("X") = / a(s)Ppg(x"|X", s)ds, (2.111)
sES

where S = (0,00), [, sa(s)ds = 1, and a(s) > 0, Vs € S. One require-
ment for being able to use this approach is that the block probability
Ppg(-) can be expressed by a closed form expression. This is, however,
not possible because of the denominator in ppg(-), e.g., the same rea-
son as why s.3 in the previous section was not possible to calculate. In
[ES98b] a simplified approach was proposed where the weighting was
done over a finite number of values of the parameter, i.e.,
N
Pupp(x™%") =Y a;Ppe(x"|X", s), (2.112)

i=1
where Ef;l a;=1,and a; >0,s; >0,Vi € {1,2,...,N}. For this weight-
ing it is possible to make some estimate on the worst case redundancy:

Theorem 2.36:
For the weighted block probability in (2.112) the worst case redundancy
for individual sequences of length n satisfies:

B . PDE(Xn|)A(n, S*)
&™) < —1 o +log ——+———""2 2.113
Pop(x"[X") < ~logaq +log Ppp(x"[X", 5,) ( )
where
a = arg max _«a;Ppg(x"|X",s;), (2.114)

ie{1,2,..,N}
s* = argmgchDE(xﬂfc",s). (2.115)
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O

The theorem tells us that the worst case redundancy depends on two dif-
ferent things: parameter description from the weighting coefficient and
a parameter mismatch. The proof is straight forward:

Proof: From (2.112) we get:

N
Popp(<"x") - = ZaiPDE(x"&”,sz')

=1
> P nian .
2 eIy P (TR, 50
= a.Ppp(x"[X",sa).

The worst case redundancy, gpg(+), is then:

—log(Pype(x"[%")) + log(Ppp(x"|X", %))
< —log(a.Ppe(x"|X",s4)) + log(Ppe(x"[X", 7))

PDE(anA(n, 8*)
— logaa + log m.

ppE(x"|X")

D. Local Optimization

The concept of local optimization was introduced by Shtarkov, e.g., in
[Sht87], and the idea, which is very simple, is most useful for sequen-
tial coding. According to local optimization the next symbol probability
distribution should be calculated as ([Sht98]):

PL*)E (xn+1 |5~(n+1)

n+1y _
)T T P’
=0 DE

(2.116)

19(.73'n+1 |Xn, X

where

Php(x™|x") = Iglgg(PDE(Xn|in,$). (2.117)
With this method we again end up with having to calculate a closed form
expression for a product of dominators which will not be possible. In
order to find a possible solution we will therefore again approximate the
distribution and omit the normalizing factor and hence:

Ppp(x"x") = mfgiPDE(X”ﬁ",S) (2.118)
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_ n 1 |.73z - ii',|

= 1?38; 1 % exp(—T) (2.119)

B 1 Sz (n)

= 2133‘ @) exp(— ) (2.120)
n n

= <—e,5’w (n)) , (2.121)

where S;(n) = 31", |2; — &;|. From the closed form expression we get the
next symbol probability as ([Sht98]):

(e(sm(nfl)i\wn*in\))n
n
Dl CERTS ).

. m—1 1 n\ !
- (Sw(")z(sw<n—1)+|z'—:en|>> @129

i=0

Iz |x" 1, &™) (2.122)

Without the approximation, the expected parameter description cost
should be equal for all parameters since it is a property of local opti-
mization. For this approximated distribution we could expect a slightly
different behavior due to the limited range for the input symbols.

2.6 Pixel Correlation

In this section we will show that the correlation between pixels is very
local. There are, however, some major problems associated with estimat-
ing the correlation between pixels: the input data is limited (i.e., not
infinite), the correlation changes throughout the image and it is not the
same for all images.

In order to estimate the correlation we use a context tree of depth 1.
Each leaf will have a Dirichlet estimator. Based on this we estimate the
codeword length by using the context tree and use different pixels as
context. The result is shown in Figure 2.19.

The used image is a medical image with 512x512 pixels and with 8 bits
representation of the gray scale for each pixel. Our conclusion from Fig-
ure 2.19 is that the correlation tends to be very local and there is a big
difference already among the closest pixels. The result may be somewhat
different when considering other types of images. For example when con-
sidering half tone images the correlation is “spread out” in a systematic
way determined by the technique used to construct the half tone image.
This subject is discussed in, for example, [MF96].
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Figure 2.19: The figure shows an estimated codeword length based on the
knowledge of a neighbor pixel at distance d away. This is for the medical im-
age “skalle”.
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Chapter 3

A Technique for
Prediction and
Probability Assignment

(PPA) in Lossless Data
Compression

This chapter is based on the work presented in [ESOO0b].

3.1 Introduction

The aim in universal lossless data compression is to adapt the compres-
sion scheme to cope with the unknown source parameters. The best
achievable performance, in terms of average redundancy, that we asymp-
totically can expect is stated by Rissanen’s lower bound [Ris84] for uni-
versal coding. One way of constructing a sequential universal source cod-
ing scheme is to use the local optimization method. In local optimization
the aim is to minimize the maximal individual redundancy for any se-
quence. This approach is well studied by, for example, Shtarkov [Sht87].
One important fact that we will pay attention to is that by studying in-
dividual redundancy we get a tool for short or limited sequences, i.e.,
we may get a desired performance from the first symbol to the last.
This plays an important role in, for example, lossless image compres-
sion where the amount of data is, by nature, limited by the bounds of

69
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the image. One might, however, argue that the amount of data is much
larger in a typical image compression setting compared to a correspond-
ing text compression setting. This may be true but as will be discussed
further on in this chapter it is absolutely necessary to analyze methods
and performance for short data sequences in order to squeeze a few extra
bits (of redundancy) out of the compressed representation.

The lower bound for redundancy in universal data compression depends
not only on the length of the sequence but also on the number of unknown
parameters, K, i.e., the average redundancy satisfies:

p(n)>(1- e)g logn, 3.1)

where € > 0, see also Theorem 2.16. Thus, for constructing a data com-
pression scheme for practical applications it is the aim to find a parame-
terization of the source with a minimal number of unknown parameters
without losing any information. It is well known in the lossless image
compression community that (linear) prediction is an excellent tool for
doing such a reduction of the number of unknown parameters, see e.g.,
[How93], [MRS94], [MS95], [ES96], [WRA96], [WSS96], [Wu96]. For this
reason, we will focus on a compression scheme as in Figure 3.1. This
is the kind of model that is often' used, directly or indirectly, in each
node of a context tree in an image compression scheme. The probability
assignment (PA) scheme is based on a memoryless model with a proba-
bility distribution with mean value equal to zero. In some schemes, for
example [WSS96], a small bias to the mean is used to compensate for a
possible rounding error when discretizing the real values in the predic-
tion scheme.

Some of the above may sound strange. Do we not always use a minimal
number of parameters, and what does “losing any information” mean?
The answer is that many image compression schemes use a model simi-
lar to Figure 3.1 based on the double exponential (DE), Gaussian or simi-
lar probability distribution. For example, with the Gaussian distribution
the parameterization will have only 2 unknown parameters:

. 2
p(z) ~ exp (—M) , §>0, (3.2)

where m and s are unknown. This parameterization is, however, only
useful if it is “correct”. In general, for practical applications, we cannot
tell if this is true or not. But there is still a gain since the ratio between
M — 1 and 2 (where M is the size of the alphabet) unknown parameters

1For example in some of the mentioned references.
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Source z =<> T  » Encoder |»Codeword
A-
1 2 Prob. distr.
Context Prediction PA
data

Figure 3.1: A compression scheme with separate prediction and probability
assignment (PA). The predicted value is subtracted from the source data, i.e.,
Z = x — Z. The output from the encoder is a code word based on the Z-value
and the probability distribution from the PA. (The thicker arrows in the figure
corresponds to vector representation)

could be “very” big and the larger model can only perform better if the
data sequence is “very” long. A simple example will show the possible
gain:

Example 3.1:

We consider a source that emits source symbols according to the follow-

ing discrete distribution,which is a distorted DE distribution with mean
128.3:

— 128.
p(x) = ¢y exp (—w) , §>0, (3.3)

where z € {0,1,...,255} is the source symbol and ¢, is a random value
taken from a random variable which is uniformly distributed in the range
[1,2]. The parameter s is unknown.

From the distribution we make a probability distribution by normalizing:

_ @
R )

We will compare two different methods for probability assignment of the
data from this source. On the one hand, we will use the Dirichlet esti-
mator (see Section 2.5.2) for 256-ary alphabet, and on the other hand,
we will use the probability assignment for DE-data that was derived in
Section 2.5.3.

With the Dirichlet estimator we will have 255 unknown parameters to
estimate, and with the probability assignment for DE-data we will have
only one unknown parameter?. But since the distribution is not really

3.4)

2The mean value is known and s is the only unknown parameter.
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a DE-distribution, we will not perform asymptotically correct with only
one parameter.

In Figure 3.2 we have simulated 100 sequences of length 10000 and com-
pared the average results for the two different probability assignment
methods.

We conclude that, in this example, it takes on the average approximately
7000 symbols before the Dirichlet estimator is superior. Thus, it will be of
great advantage to use the one parameter approach for short sequences
although the probability distribution for the source data is a distorted
DE-distribution. |

1200
1000
800 R

600 -

Redundancy [bits]

400t - 7

2001

O 1 1 1 1 J
0 2000 4000 6000 8000 10000

Figure 3.2: The result from Example 3.1. The y-axis shows the redundancy
(averaged over 100 sequences) and the x-axis shows the sequence length. The
solid line in the graph corresponds to probability assignment for DE-data, and
the dashed line is the Dirichlet estimator.

Much work has been focused on different strategies for universal pre-
diction schemes. These prediction schemes have often some kind of con-
nection with universal data compression, e.g., [Ris84], [FM92], [FM94],
[FS98], [MF98]. Despite the excellent results in that area, the applica-
tion in lossless image compression requires some further investigation
since we want to minimize the resulting codeword length. Minimizing
the code word length may not necessarily be the same as minimizing the
error from the prediction scheme.



3.2 Context Linear Sources

In the way the data is treated in most image compression schemes, with
independent prediction and probability assignment (or estimation), we
cannot guarantee that it is possible to make a compression scheme that
has an optimal behavior, i.e., minimal value of K in the average total
redundancy:

p(n) = glogn + 0(1), (3.5)

when n — oco. For this reason, the prediction and probability assignment
(PPA) concept was introduced in [ES98b] and [Eks98]. The aim with PPA
is to optimize the prediction and the probability assignment together in
order to control the behavior of the redundancy in a desired way. This is
also of major importance since we usually use some kind of context tree
model for our data, and the sequences in each node of a context tree tends
to be very small, e.g., less than 100 samples, except for a few nodes at
small depth. For sequences of limited length it could be disastrous to use
a universal source coding scheme which only performs asymptotically
correct according to Equation 3.5 and has a “bad” initial behavior.

In the sequel of this chapter we will describe a technique for construction
of a PPA scheme for some commonly appearing sources in lossless data
compression. The technique may very well be suited for other similar
sources.

3.2 Context Linear Sources

We will focus our analysis on a special type of sources that are com-
mon in image compression (e.g., see [IWRA96]), in various topics of signal
processing etc. We will denote this class of sources as Context Linear
Sources (CL-Sources). The name is based on the similarities with for ex-
ample Context Tree Sources. A CL-source takes a context as input, and
based on a linear combination of the context it will emit a source sym-
bol. We will consider two different kinds of CL-sources, with or without
feedback (see Figure 3.3). A subset of the class of CL-sources can also
be regarded as auto regressive processes (AR-processes) [Mat96]. Fur-
ther discussion on the AR-process and image compression can be found
in [WRA96]. When we consider applications of image compression, we
will assume that each node of the context tree observes a sequence from
a CL-source without feedback.

The CL-source works as follow: the source takes an integer vector y =
Y192 - .-y as input. From the input a temporary value m is calculated
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Figure 3.3: Context Linear Sources (CL-source) with feedback. If the context

data would appear from another source, it would have been a CL-source without
feedback.

according to:

m =m(y,a) = Z aiYi, (3.6)
i1

where the coefficient vector a = ajas...a,, a; € R, is an unknown param-
eter of the source. From the m-value and a parameter vector 6 a probabil-
ity distribution for the output alphabet is calculated, i.e., P(m(y,a), 8).
It should be noted that, for simplicity and due to the nature of digital
images, we will in the sequel only consider integer context data.

3.3 The PPA Concept

The PPA concept was informally defined in [Eks98], see Definition 2.30.
In Chapter 2 it was discussed that it is important not to split the pre-
diction and probability assignment into separate parts. When we con-
sider the CL-source based on a Gaussian distribution, we will find sev-
eral methods for estimating the distribution parameter s and the vector
a in Figure 3.3. A simple approach is to use an estimate giving the least
square sum error, i.e.,

n—1
] P— . 2
arg min ;(:c, m;)°. 3.7

From statistical theory there exists many (easy) ways of estimating the
distribution parameter s in (3.2) for the continuous Gaussian probability
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distribution. One way of doing this is by estimating the variance:

1 n—1

(mi — mi)?, (3.8)

and from the variance calculate the estimate of s. However, it should be
noted that since we are working with a discrete limited alphabet, it is not
always possible to find a useful closed form expression for the variance.
This will be discussed later in this chapter.
The elementary method of doing PPA would be to use a weighting tech-
nique. A straight forward derivation of a weighted PPA method for the
Gaussian distribution could be as follows:
First, we define our discrete Gaussian distribution according to:

2

(z —m(y,a)) )

8

Pg(x,y,s,a) = c¢(m(y,a),s) exp(— s>0 (3.9)

where c¢(m, s) normalizes the function to a probability distribution, i.e.,

M-1 5\ !
c(m,s) = (Z exp(—w)> . (3.10)
=0

8

The block probability for a sequence is thus:

n—1
PBG(XgilaYg’il:S:a) = HPG(JI,‘,Y%,S,&), (3.11)
i=0
where
xg™h = mom1c Ty, 3.12)
Yo = YoViee Yoo, (3.13)
Yi = wiiVi2 - Yirt1- (3.14)

From the block probability we define the weighted block probability ac-
cording to:

Pwpa(xy ', Y5 ) ://a(s,a)PBg(ngl,Ygil,s,a)dads, (3.15)
sJa

where the constraint on the a priori parameter distribution, a(-), fulfills:

/S/a‘a(s,a)dads =1. (3.16)

From the weighted block probability we get the next symbol probability
according to:

Pwpc(xy 'z,y8)

nfl)

- . (8.17)
Pwpe(xy 1, ys

Pgppa(zlxy ', YE) =
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3.4 A PPA Technique Based on Local Opti-
mization

The basic idea with local optimization is that every parameter value for
the unknown parameters should have equal description cost, i.e., the
redundancy for not knowing the parameters in advance is independent of
the actual parameter value (within a specified range). By having this aim
locally in every part and every symbol in the sequence, we do not only
get an asymptotically optimal behavior but also a redundancy behavior
according to Equation 3.5 for every sequence. With optimal in this case
we refer to individual redundancy which also means optimal for average
redundancy.

Construction of a local optimization scheme for the Gaussian distribution
is done by first calculating the maximum probability for a sequence:

Ppg(xg !, Yg™") = max B(s,a) Pe (x5, Y5, 5,a), (3.18)

where f§(-) is the a priori distribution on the parameters. In order to give
all parameter values equal description cost within the input range the
B(-)-function should be chosen as a constant in that range. Note that
B(-) may not necessarily be a probability distribution which is important
when we have infinite (or semi-infinite) parameter range, e.g., s > 0.
From the maximum probability we get the individual next symbol prob-
abilities by normalization:

Ppo(xg 'z, Y§)

M— 1. :
Ei:ol Ppa(xg 1’7Y6L)

This technique has been shown by Shtarkov [Sht87] to perform optimal
in terms of (individual and average) redundancy for essentially any prob-
ability distribution and any number of unknown parameters.

The drawback with the presented technique is when, for example, apply-
ing it on the Gaussian distribution since it is not possible to calculate the
maximum probability in an efficient way (closed form expression). This
is due to the fact that the normalization ¢(-) in (3.10) cannot be calculated
without knowing the mean value m for every sample. But m depends on
the parameter vector a which is, and will stay, unknown in the local op-
timization scheme. Thus, we will have to construct an approximate local
optimization scheme:

Algorithm 3.1:
In order to find P} (x2~",Y5™") do the following:

PLog(.’IJ|X0n_1,Yg') = (3.19)
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» Calculate the best estimate of a according to a least square sum
criteria, i.e.,

a* = argminS,, (ngl, a, Ygil) (3.20)
n—1

= argmin Z (z; — m(Y;,a))%. (3.21)
1=0

» Determine the parameter s* giving the maximal probability, i.e.,

§* = argmax f3(s,a)Ppg (xg’l, Yg’l, s,a”). (3.22)
S

» Limit the parameter s* to a preselected range. Denote this value

s,
» Find the max-probability according to:

Pio(xi~1, YR = B(s**,a*) Ppa (x4~ !, Yy, s*,a%).  (3.23)

Two approximations are introduced:

e The parameters a and s are optimized individually. This has the
advantage of not only simplifying the calculations but it also makes
it possible to take advantage of known results in linear prediction,
e.g., [FS98].

e The parameter s is limited to a preselected range in order to avoid
the problems associated with, for example, s = 0 (where the func-
tion is not defined).

We should also note that since the a-vector is determined by the least
square sum criterion, the a priori distribution §(-) will not have any af-
fect on a*.

The reason for doing these approximations are not just to be able to solve
the problem. We note that if the probability distribution behaves “nicely”
and the predicted values (m-values) are located not too close to the edges
of the the range [0, M — 1], the a-vector will have little influence on the
normalizing factor of the probability distribution (at least if we consider
DE or Gaussian distribution as described previously in the chapter).
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3.4.1 PPA in the Gaussian Case

When considering the construction of the approximate PPA described in
Algorithm 3.1 for the Gaussian distribution, we will have to introduce
further approximations since it is not possible to find a useful discrete
probability distribution. For this reason we will use an approximation
based on the continuous Gaussian probability distribution:

Pg(z,y,s,a) = \/%exp(—w). (3.24)

The step to get the block probability is trivial:

Psg = Ppa(xy ', Y3 !, s,a%)
n—1
= ][] Po(zi,Yi,5,a%) (3.25)
i=0

n n—1 _x n—1
(%) exp (_ Ssq(xo Jsa 7Y0 )) . (326)
™

From the block probability we derive an expression for the parameter s
that maximizes the probability:

§* = argmaxPpg(x) ', Yy ! s,a%) (3.27)
s

n—1 _x n—1
= 2ulsanYg) (3.28)
n

With (3.26) and (3.28) used in Algorithm 3.1 we get an approximate PPA
scheme for the Gaussian distribution.

By considering (3.26) we note why it is natural to find the best a-vector
before the best s parameter in Algorithm 3.1. The square sum of the
prediction error Ss,(-) in (3.26) is independent of the s parameter.

3.4.2 PPA in the DE Case

In [Eks98] a probability assignment technique for DE-data based on lo-
cal optimization was derived. That method has, however, the drawback
that the mean value, m;, must be known for each symbol to be encoded.
Another drawback when considering the DE-distribution is that the aim
should be to minimize the sum of the absolute error and not the sum of
the squared error.

In this chapter we will not investigate the DE distribution further but
conclude that it is possible to derive a PPA scheme similar to the Gaus-
sian case with the same type of approximations.
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3.5 Some Experimental Results

Based on the methods presented in this chapter we will investigate how
they perform in practice. In all experiments we use a CL-source without
feedback. The context data symbols are independent of each other. The
source and context data alphabet sizes are both 256, which corresponds
to the gray scale images commonly used for comparison in lossless data
compression and throughout this thesis.

We start by considering a CL-source with the Gaussian distribution ac-
cording to (3.2). It must be noted from a practical point of view that,
since we will use arithmetic encoding for the actual coding, there will be
a smallest probability entity that can be represented. As an example we
could consider an arithmetic coder with 15 bits numerical precision lead-
ing to the lowest entity of representable probability of 2715. If we use the
Gaussian distribution and have the shape parameter s = 15 and mean
value m = 128, one can find that only 23 symbols will have probability
larger than 215, Thus, the remaining 233 symbols must be encoded with
a (much) higher coding distribution than the “correct” probability distri-
bution. Normalizing the coding distribution to the 15 bit precision yields
that we will get an coding redundancy of 0.010 bits/source symbol.

The first experiments, resulting in Figure 3.4 and 3.5, show how the
redundancy increases with the length of the data sequence for r = 2 and
r = 8. Each line, corresponding to one value of s, is an average of 1000
sequences. The values of the s parameter in this experiment lie in the
range [1,12]. The a-vector is chosen in such a way that every element
of the vector is in the range [0,1]. A new a-vector was created for each
sequence.

The dash-dotted lines correspond to the case with separate estimation of
the a-vector and the parameter s. The dashed lines corresponds to a case
where the parameter s is estimated together with the a-vector, i.e., from
the estimated a-vector a squared sum of errors is calculated based on the
sequence and s is estimated from this sum. The solid line corresponds to
the approximate local optimization method presented in this chapter.
One can note that independent estimation of a and s is more or less use-
less in comparison to the other two cases. We also note a large difference
between the other estimator approach and the local optimization tech-
nique. This difference is also possible to observe in Figure 3.6 where the
redundancy after 128 symbols, with r = 8, are shown with respect to the
s parameter.

Within the range, [1,12], of the s parameter we note that the redundancy
is almost “constant” with respect to s, i.e., the redundancy after 128 sym-
bols is almost independent of s. It is, however, possible to change the
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Figure 3.4: Redundancy vs sequence length for » = 2. The worst performance is
for independent estimation of the a-vector and the s parameter. The best perfor-
mance is by the approximate local optimization scheme. Each line corresponds
to one value of of the parameter s, and is an average over 1000 sequences.
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Figure 3.6: Redundancy after 128 source symbols vs the parameter s. (r = 8)
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behavior for the local optimization scheme. This is done by changing the
a priori information or parameter description cost 5(-) in (3.18).

Our presented approximate PPA scheme can, however, not take full ad-
vantage of () since the a* in the algorithm is determined by the least
square sum criterion only, and thus without consideration of §(-). This
might be a major drawback in some applications, e.g., where the a-vector
is restricted to a certain range.

(&) (o2}

Estimated slope
D

Ay

Figure 3.7: The slope vs r when considering the redundancy vs log(sequence
length). The dashed line corresponds to the estimation technique, the middle line
is the local optimization technique, and the lower line is the theoretical bound,
i.e., “K/2”.

An important aspect of the compression scheme is that it should perform
like K/2logn + O(1) in terms of redundancy, where K is the number of
unknown parameters. In Figure 3.7 the slope “K/2” behavior is studied,
i.e., p(n)/log(n). In our setup the number of unknown parameters is
K =r +1. The lower line in the figure shows the ideal performance, and
the dashed and solid line correspond to the same cases as in the previous
figures. The scheme with independent estimation of a and s is omitted
in this figure.

We note a slightly worse performance for the two PPA schemes than
the desired behavior. In some sense we may consider this as if our PPA



3.6 Conclusions

scheme uses more parameters than necessary. This is the penalty for the
introduced approximations.

Some further notes about the two estimation techniques: When we use
separate prediction and PA, the performance is really bad compared to
estimation of s based on the estimate of a-vector. This is because the
error in the estimate of a will always increase the squared sum of errors
after the prediction. This will, in its turn, make us estimate s too large.
In order to make a good estimate of s we will therefore need to use the
information of the estimated a-vector.

It must be pointed out that for lossless image compression it is usually
not the case that the context data symbols are independent of each other.

3.6 Conclusions

In this chapter we have studied prediction and probability assignment
(PPA) in the context of lossless image compression and similar areas.
From some basic definitions we have presented and motivated an ap-
proximate PPA scheme. We have shown that this scheme performs well
in terms of average redundancy on a test setting based on the Gaussian
probability distribution. Similar results are to be expected for similar
distributions such as the DE distribution.

However, the approximate scheme for the Gaussian case does not per-
form optimally (in terms of average redundancy).
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Chapter 4

The Context Mapping
Function (CMF) in
Lossless Data
Compression

This chapter is based on [ES00a].

4,1 Introduction

In many lossless image compression schemes there exists some kind of
prediction scheme along with a context modeling scheme, e.g., [WSS96],
[Wu96], [WRA96], [Eks98]. One of the main goals with prediction is
to reduce the number of unknown parameters in the context modeling,
e.g., see [ES96], since using fewer parameters will have a major impact
on the redundancy, at least asymptotically. This is due to Rissanen’s
bound for universal modeling [Ris83], from which we find our aim for
the redundancy for stationary ergodic sources (this was also discussed in
Chapter 2 and 3):

1 1
() < Flogn , OQ)

, N — 00, 4.1)
n n

where k is the number of states (or nodes if we have a tree representa-
tion) in the model and m is the number of unknown parameters in each
state, e.g., m = 1 for binary data.

85
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By using prediction in lossless data compression we are not only able
to reduce the number of states k. We may also use a statistical model
with fewer parameters than the alphabet size minus one, e.g., for 8-bit
data we may be able to reduce from m = 255 to m = 2 by using the
double exponential or the two sided geometrical distribution. This was
discussed in detail in Chapter 3.

However, one problem still remains and that is the topic of selecting
an appropriate context from the observed data for the context model-
ing scheme. In [WSS96], [Wu96], [WRA96], [Eks96] etc., we have seen
a variety of ad-hoc context selection schemes with the aim of improving
the compression performance.

In [Eks98] the Context Mapping Function (CMF) concept was introduced
as a general tool of describing how the context selection was done. It was
also stated that a well selected CMF could make great improvements
to lossless image compression!. This is motivated by the fact that the
correlation between adjacent pixels and bit planes in images tends to
be very high locally, but decreases rapidly as the distance increases, see
Section 2.6. For this reason it is very hard to take advantage of long
contexts, since the gain in information per context data symbol cannot
compensate the increased loss when the number of states grows expo-
nentially with the length of the context.

The question still remains what motivates us to try to find the “best”
CMF, and, in case we would like to find the best CMF, how to do it?
Some of these issues will be discussed in this chapter along with some
experimental results.

Related work on this subject has been carried out in [WLZ92] and [WS96].
But already in [RL81] a similar approach to the CMF was introduced:
the structure function. The structure function, z = f(s), defines a state,
z, from the previous observed data, s. It is stated in [RL81] that “to find
an optimum structure function is an undecidable problem” . The basis
for the work in [WLZ92] is to use a kind of hypothesis testing to find an
ordering of the context data adaptively. In [WS96] an approach is made
using weighting of CTW models, each model using different ordering of
the context symbols. However, both these approaches lack the ability to
adapt to models where there exists a dependence between the context
data symbols since they will only “change” the order of the context data.
Another drawback of these algorithms is the computational complexity.
In [WS96] it is stated that using a depth larger than only a few symbols
is exceedingly intractable.

1Without giving any explicit details.
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4.2 The CMF Concept

In the sequel we will assume a universal source coding scheme according
to Figure 4.1 as our main tool. The Context Tree Weighting (CTW) algo-
rithm [WST95] is known to perform optimally both in terms of average
and individual redundancy. The study of individual sequences is of major
importance when considering compression of short data sequences.

Source source data | Arithmetic
encoder
| probability
distribution
Context __,.| CMF CTW
data

Figure 4.1: A universal source coding scheme based on the Context Tree Weight-
ing (CTW) algorithm.

We define the CMF according to:

Definition 4.1:

Given context data X = X; X5 --- Xg, where X; € X,i = 1,2,..., R are
context symbols, the context mapping function (CMF) defines a corre-
sponding meta-context Y = Y1Y5---Yg = CMF(X), where Y; € ),i =
1,2,...,Q.

The context data alphabet X may be any alphabet and ) is a discrete
alphabet of finite size. |

Based on the definition, we give a simple example:

Example 4.1:

Quantization of real valued data into a finite alphabet with a 16 bit nu-
merical precision is one example of a CMF, i.e., ¥ € R, Y € {0,1}, R=1,
and @ = 16. ]

We will in the sequel denote the size of the input vector (i.e., R) as CMF
input size and correspondingly for the output vector (of size Q) the CMF
output size. We will for practical purposes and due to the nature of digital
data restrict our analysis to the case with binary alphabets, i.e., X,Y €



88

Chapter 4: The Context Mapping...

{0,1}.

In order to describe the influence of the CMF we consider a simple ex-
ample. In Figure 4.2 we have a general binary context tree source (see
Section 2.2.1) where the data alphabet is binary and all contexts appear
with equal probability, i.e., 1/8.

6=0.1
0 =0.2
6=0.1
6=0.2
6=0.2
6=0.9
0 =02
0=09

Figure 4.2: A general binary context tree source with binary output symbols.
The parameters denote the probability for one of the data symbols.

The first observation we make is that the second context bit is of no
importance for our source, thus the source could be simplified. From our
universal source coding perspective, however, we do not know in advance
the parameters of the source. But with the CMF in Table 4.1 our CTW
algorithm would be able to find the tree in Figure 4.3.

Input: X; X5 X3 | Output: Y1Y5Y3
000 000
001 010
010 001
011 011
100 100
101 110
110 101
111 111

Table 4.1: The CMF for removing the influence of the second context bit, i.e.,
context bits two and three are swapped.



4.2 The CMF Concept

89

0 =01

0 =02

h 9 6 =02
6=09

Figure 4.3: The general binary context tree source when the second context bit
is omitted.

When we study the tree i Figure 4.3 we note that it will be possible to
further reduce the number of nodes in the tree by merging together the
states with equal parameter values. But the corresponding CMF could
be constructed in 3 different ways, see Table 4.2.

Input: X; X, X3 | CMF1: V1Y2Y; | CMF2: V1Y,Y; | CMF3: YV Y,Y;
000 000 000 000
001 010 100 100
010 001 001 001
011 011 101 101
100 010 100 100
101 100 110 010
110 011 101 101
111 101 111 011

Table 4.2: The three possible CMF's to obtain a resulting tree model with 3
leaves.

It should be clearly stated that this kind of merging of tree leaves is only
successful when the parameters are equal and we consider the perfor-
mance asymptotically. For limited length sequences the case is, how-
ever, slightly more complicated.

Leaving the simple example, we take a closer look at the general idea. If
we make the comparison in terms of code word length when using two
separate nodes, B and C, with parameters 0 and 08¢ respectively, and
only using one node A which is a merge of B and C, we get:

1
la nh(PBGB -+ (1 — PB)Hc) -+ 5 log(n) +cy, (4.2)

1 1
Ip+ilc = th(HB) + 5 lognB + ¢ + nch(oc) + 5 lognc + C3,(4.3)
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where np and n¢ are the number of observations in the nodes, n = ng +
ng, h(z) = —zlogz — (1 — x) log(1 — z) the binary entropy function, Pg =
ng/(np + nc) and ¢;, i = 1,2, 3, are constants. From this we can derive
when the one node model is superior to the two node model, and we end
up with an expression of the type:

la < lp+lg, (4.4)
1
an < ¢+ 3 logn, (4.5)

where n is the total number of observations, and ¢4 > 0 and ¢5 are con-
stants. The conclusion is that the one node model may be better initially
but will always perform worse than the two node model asymptotically,
except when ¢4y = 0, 1i.e., when 8 = 0¢. This result is well known and it is
an important result for our application where the amount of data is most
limited and where “asymptotic behavior” may not at all be applicable.

Returning to our example we may ask ourself which one of the three
CMFs is the best? From the asymptotic analysis we would state that the
CMFs are equally good. But for short data sequences we might think
otherwise. In Figure 4.4 the three CMF's are compared. Since CMF1 will

18

16}
14+
12

101

code word length [bits]

B [« @
T T T

0 500 1000 1500 2000
n

Figure 4.4: A comparison when using no CMF (top), CMF2, and CMF3 (almost
indistinguishable from CMF2). The comparison is calculated relative to CMF1.
An average over 1000 sequences is made.

clearly perform best, the comparison is shown as the extra code word
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length compared to CMF1. The CMF2 and CMF3 perform almost in-
distinguishable, in terms of code word length, in this example. We also
note the extra penalty for not using well chosen CMFs. Why do we care
about these few bits in difference? There are two things we should keep
in mind:

e The gain would have been bigger if the parameters were closer.

e In a binary context modeling scheme with tree depth 15 we may
have up to 65535 useful nodes and leaves. If we use such a scheme
for lossless image compression and are able to save a few bits for
many of the nodes or leaves we make an improvement that could
be of great interest.

Another gain that is very important, and which we get for free, is that
we could use a shorter context and thus reduce the computational com-
plexity of the context modeling.

Since we will only consider the case when the CMF is used together with
the CTW algorithm, it will be natural to define the CMF from a tree
structure instead of a table as in Table 4.1 and 4.2. Let us return to the
example with CMF1 in Table 4.2. In order to determine the first output
symbol, Y7, we find the Boolean function?:

Y, =X A Xs. (4.6)

For the second symbol we have two cases depending on the first symbol,
Yi:

er‘g = X;VXs, 4.7)
where Y3, denotes Y5 given that ¥; = 0 (and Y|, correspondingly for

Y> and Y; = 1). Finally, the third and last symbol, Y3, depends on the
previous two and can be found to be:

Y300 = Xo, (4.9)
Y300 = X, (4.10)
Y30 = Xo, (4.11)
Y5 = Xo. (4.12)

We can conclude that the last symbol does not depend on the first two
which was already observed in the beginning of this example since X,
does not affect the source.

«

2Logical “and” is A and logical “or” is V.
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In the sequel we will denote each of the above functions as a map rule for
each node of a tree, see Figure 4.5. In the next section we will describe
a method to find good map rules for some sample data. We will use map
rules with a fixed number of input variables thus restricting the required
size for the CMF.

Figure 4.5: A CMF-tree with one map rule for each node (and leaf) in the tree.

4.3 An Off-line Algorithm for Construction
of Good CMF's

The problem of finding good CMF's have some similarities to finding good
test or decision algorithms. The main differences between the principles
of CMF and decision algorithms are that we may merge nodes in the
CMF and that CMF should be constructed off-line, which may not nec-
essarily be the case for decision algorithms. With off-line in this case we
mean that the CMF will be constructed on a test data set. Once it is
constructed it is assumed to be known and we can use it in our desired
application without having to construct/describe the CMF again.

An investigation on how to modify and apply the CTW algorithm for use
as an on-line decision algorithm was presented in [Vol94]. For use in loss-
less data compression we would, in contrast to the work in [Vol94], like
to construct a CMF off-line. This implies that we will make the construc-
tion based on a set of test files or test data. From this set, we will extract
a test sequence consisting of both observations and the corresponding
context for the observation.
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In order to construct an off-line scheme for finding a good CMF we will
first have to define a measure which will enable us to compare two CMF's.
The basic approach is to apply the CMF's to the source coding scheme in
Figure 4.1 and compare which one is producing the shortest code word.
It should be noted that two CMF's are only comparable if the same test
sequence is applied to both of them and the result will thus be depen-
dent of the actual test sequence. Since every non-trivial® source will be
able to produce for example only zeroes or only ones, for a limited length
sequence, we recognize a problem with comparing CMFs if the test se-
quence is too short.

A simplified version of the CMF-comparison will be used when we are
searching for a good CMF since the CMF's will only differ in the last level,
i.e., at maximum depth. We will therefore not use the CTW algorithm to
evaluate the performance. Instead we use a tree with counters for the
observations. For each leafin the counter-tree we calculate a pseudo code
word length, I(a,b), and corresponding pseudo rate, r(a, b), according to:

l(a,b) = (a+b)h(aj_b)+%log(a+b), a+b>0, (4.13)
r(a,b) = % (4.14)

where a and b are the counters for the binary symbols. By definition we
have 1(0,0) = 0.

The problem of finding the best CMF can be done by exhaustive search,
but that is, of course, not reasonable except for trivial cases. What we
will do is to use simulated annealing, which is a basic method from com-
binatorial optimization, see e.g., [AK89]. We will also “optimize” at only
one level at a time, i.e., first optimize at depth 1, then at depth 2 and so
on until the maximum depth is reached. This will not result in the global
optimum, except for special cases, but will hopefully give us a reasonable
result.

Based on the basic simulated annealing scheme we propose the following
algorithm for finding a good CMF for given test data:

Algorithm 4.1 (Basic optimization of CMF):

In the following pseudo code, maximum depth denotes the maximum depth
of the desired CTW-tree. The parameter iterationLength is the number
of steps in the simulated annealing for each depth of the algorithm. For
each step in the simulated annealing scheme a C-value is calculated as
an exponentially decreasing function with constants Ca and Cb. These

3Non-trivial here refers to sources where no probability parameter equals 0 or 1, and is
non-deterministic.
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constants has to be chosen is such a way that the desired range of C is
obtained.

Initialize TestSequence
Initialize BestCMF
FOR currentdepth from 1 to maximum depth DO
Increase the depth of BestCMF to currentdepth
Evaluate (BestCMF,TestSequence)
PreviousCMF = BestCMF
CurrentCMF = BestCMF
Permute CurrentCMF
FOR counter from 1 to iterationLength DO
C=Cax*exp(-Cb*counter)
Evaluate (CurrentCMF,TestSequence)
BestCMF = Mix (BestCMF,CurrentCMF,0)
CurrentCMF = Mix (PreviousCMF,CurrentCMF,C)
PreviousCMF = CurrentCMF
Permute CurrentCMF
0D
)
Output BestCMF

Some notes about the algorithm. Each CMF-tree contains the rules for
the mappings represented in a tree along with the counters at depth
currentdepth. When the Evaluate function is applied the counters are
updated according to the mapping rules and the test sequence:

Algorithm 4.2 (Evaluate):
As input to Evaluate, the parameters TestSequence and CMF are given.
The parameter TestSequence consists of both TestData and ContextData.

Initialize Counters
FOR i from 1 to |TestSequence| DO
k = CMF (ContextDatal[i])
Increase Counters[k] according to TestDatal[i]
oD
Output Counters

In the pseudo code | TestSequence| denotes the length of TestSequence.
As output for the algorithm the counters in the leaf nodes are given. B

The Mix function makes, for each couple of sibling leaves (with common
father), a comparison on which mapping rules to keep according to the
simulated annealing principle. The comparison determines the mapping
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rule at the depth just below the depth where the leaves resides. When
the parameter C is equal to 0 the new rule is only accepted if it is better
(lower rate) than the old one. In the other case, i.e., C>0, the new rule is
accepted if the difference in rate fulfills:

r(new) — r(old) < random value in the range [0, C), (4.15)

where r(new) = (I(ag, bo)+1(a1,b1))/(ao+bo+a1+b1) and correspondingly
for r(old). The counters ag and by denote the observations in one of the
leaf nodes and a; and by the other leaf node. This implies that the new
rule is always accepted if it is better than the old one.

The Permute function makes a permutation of each of the mapping rules
at the depth currentdepth-1. In order to make this feasible to solve, we
cannot have a complete function table in each node, e.g., if we have a
total of 50 bits as input to the CMF we would have to store the function
table of size 2°° bits in each node. As a simplification, we restrict all
mapping rules to have only a few bits of input. This will allow us to
make the function table of reasonable size. The Permute function will
therefore either make a change in the function table or change one of the
input variables.

By using the basic simulated annealing scheme as presented in Algo-
rithm 4.1, it is possible to find a good CMF as will be shown in Sec-
tion 4.4. However, the convergence of the algorithm will be shown in
Section 4.4.1 to be slow or the improvement of the optimized CMF will
be low. One reason for this is due to the fact that small changes (or per-
mutations) in the CMF may not imply small changes on the resulting
pseudo rate. This will be discussed more in Section 4.4.1.

One more thing to consider in Algorithm 4.1 is how to use it when we are
going to optimize over a test data set, e.g., files from the Calgary Corpus.
In order to find optimized CMF for multiple sources or a test data set
and improve the convergence rate we propose the following algorithm:

Algorithm 4.3 (Optimizing CMF for multiple sources):

The setup is the same as in Algorithm 4.1 except that multiple test se-
quences are used, one for each source. As a consequence multiple CMF-
trees with counters must be used.
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FOR f from 1 to number of sources DO
Initialize TestSequence[f]
0D
Initialize BestCMF
FOR currentdepth from 1 to maximum depth DO
Increase the depth of BestCMF to currentdepth
FOR f from 1 to number of sources DO
CurrentCMF[f] = BestCMF
Evaluate (CurrentCMF[f],TestSequence[f])
0D
BestCMF = InitCounters (CurrentCMF)
PreviousCMF = BestCMF
TmpCMF = BestCMF
Permute TmpCMF
FOR f from 1 to number of sources DO
CurrentCMF[f] = TmpCMF
0D

WHILE continue condition ok DO
FOR counter from 1 to iterationLength DO
C=Cax*exp(-Cb*counter)
FOR f from 1 to number of sources DO
Evaluate (CurrentCMF[f],TestSequence[f])
0D
BestCMF = Mix (BestCMF,CurrentCMF,0)
PreviousCMF[f] = Mix (PreviousCMF,CurrentCMF,C)

TmpCMF = CurrentCMF [0]

Permute TmpCMF

FOR f from 1 to number of sources DO
CurrentCMF [f] = TmpCMF

0D
0D
0D
0D
Output BestCMF
The output of the algorithm is a CMF. |
The differences between Algorithm 4.1 and Algorithm 4.3 are the follow-
ing:

We use multiple test sequences in the second algorithm. Thus we must
make a small change in the Mix-function. We calculate the rate according
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and accept the new rule in the same way as in Equation 4.15.

Another change in from Algorithm 4.1 to Algorithm 4.3 is that we use
several/many restarts on the C-value, e.g., we run the cooling scheme
more than once. The reason for doing this is to avoid getting trapped in
one of the many local minimum. It is easy to get into a local minimum
since the change in rate is too big between neighboring permutations.
On the line: “WHILE continue condition ok DO0” we have an unspecified
stop criteria. For example, in the experiments carried out on text and
image files in the next section, we use consumed CPU-time as stop crite-
ria.

(4.16)

4.4 Experimental Results

We use the source in Figure 4.2 to examine the behavior of Algorithm 4.1.
In Table 4.3 the resulting MDL-trees are extracted (see Section 2.2.3)
from the CTW algorithm when different lengths of the test sequences
are applied.

Seq length | Node | #0 #1 (7]

100 0 9 67 0.123
1 22 2 0.900

1000 00 40 340 | 0.106
01 71 301 | 0.192
1 220 | 28 0.886

10000 00 218 | 2216 | 0.090
01 1023 | 3998 | 0.204
1 2310 | 235 | 0.908

Table 4.3: The extracted MDL-tree for various lengths of the test sequence.

From Table 4.3 conclude that our algorithm is able to find the expected
CMF for this simple source if the test sequence is long enough (in this
example somewhere between 100 and 1000). It should, however, once
more, be pointed out that the CMF is dependent on the test sequence
and thus we may always risk to run into some “bad luck”.

We will in the sequel of this section investigate a more advanced tree
source example and how to apply our suggested algorithms to text and
image compression.
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4.4.1 Tree Sources

To further study the performance of our suggested CMF optimization
scheme in Algorithm 4.3 we will study a somewhat more complex situa-
tion where we have two binary sources.

Source 1: As context input the source uses the last 5 emitted symbols,

€1,Cs, .- .,cs. From the context the following is calculated*:
Ty = ¢ ez Dy, 4.17)
o = 1 Dcs. (4.18)

The z; and z, are used as context to a context tree source with depth 2.
The parameters for the context tree source are:

x122 | P(0|z122)
00 0.70
01 1.00
10 0.15
11 0.00

Source 2: This source works in the same way as source 1 and use similar
equations, i.e., 1 = y and x5 = y3. This source has depth 3:

1 = C2 5> c3, (4.19)
Y2 = c¢1Dc3 Dy, (4.20)
Yys = 1 Dcs- (4.21)
y1y2y3 | P(0ly1y2y3)

000 0.90

001 0.65

010 0.20

011 0.55

100 1.00

101 0.05

110 0.00

111 0.85

The question is whether we obtain a common CMF for both these sources?
The short answer is yes! But the follow up question is: how do we get
there?

In the following we have used Algorithm 4.3 for optimizing the CMF.
We will only make one run of the simulated annealing scheme, i.e., the
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11r

Estimated rate

Figure 4.6: Estimated code rate vs simulation time. The lower line corresponds
to BestCMF and the upper to CurrentCMF. The value of iterationLength is 2 - 10,
thus the sharp steps are taken when the depth of the CTW and the CMF is

increased.
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Figure 4.7: Number of accepted tries for CurrentCMF for level 2.

“continue condition” will only be valid once. The map rule input size is
chosen to be 3 bits.

We start by observing the estimated code rate for the test data ver-
sus simulation time in Figure 4.6. We note that whenever the depth
increases there is an instant response in the rate. We also note that
approximately halfway on each depth there is a big change in the rate
for the CurrentCMF. If we study this phenomenon further by looking at
the acceptance rate for CurrentCMF in Figure 4.7 and for BestCMF in Fig-
ure 4.8 we note that after approximately halfway on that level only few
updates are made on the CurrentCMF. But for BestCMF there is a big in-
crease in the number of updates. The point for this “break” depends on
the source and the choice of the parameters Ca and Cb®.

What we conclude from Figure 4.7 and Figure 4.8 together with Fig-
ure 4.6 is that we should seek to use C-values that are in the “mid-
dle” range. In this region we have both a high acceptance rate for the
CurrentCMF and BestCMF. The reason why such a low acceptance rate

4Logical “xor” or modulo-2 sum is denoted @, i.e., a®b = (a’ Ab) V (a AY'), where a’ and
b’ are the (binary) inverse of a and b respectively.

5The parameters in this example are deliberately chosen in such a way that these figures
should get the break point approximately halfway.
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for CurrentCVF in the second part of the simulation interval is that ev-
ery permutation makes a too big change in the rate and thus can’t be
accepted. This is like being trapped in a box, i.e., a local minimum.
Therefore we will have to do something to be able to jump out of the
box. In Algorithm 4.3 we do this by running through the entire range
several/many times so that larger jumps may be accepted.

Although the relatively large number of acceptance in BestCMF in the
later part of the simulation interval there is no big impact on the code
rate. This is interpreted as the input variables do not change but changes
in the function tables of map rules are made.

Level 2 (BestCMF)
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N
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Figure 4.8: Number of accepted tries for BestCMF for level 2.

From Algorithm 4.3 we obtain an optimized CMF for these sources. The
resulting map rules for this example turns out to be the following (pre-
sented as a Boolean expressions):

1 = c Pos, (4.22)
Bogg = c2DcyaDos, (4.23)
Top = c3DceaDos, (4.24)

Z300 = c2Dcs, (4.25)
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Z300 = c2Des, (4.26)
Z310 = c2Decs, (4.27)
311 = c2Des. (4.28)

We identify the functions from the source definitions although they do
not appear in the same order as in the definition since we have optimized
over two sources. Using the optimized CMF and the compression scheme
from Figure 4.1 we compare the compression performance (code word
length) for each of the sources in Figure 4.9 and Figure 4.10. We conclude
that the optimized CMFs yields a results in this case that is comparable
to using the “known” CMFs, i.e., the algorithm has been able to find a
good approximation.

Source 1
1201

100 L

Code word length [bits]
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o o o
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N
o
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Figure 4.9: Code word length as a function of the number of observations for
source 1. The solid line corresponds to using the known CMF from the source def-
inition. The dashed line corresponds to the optimized CMF and the dash-dotted
line to the raw context without a CMF.

4.4.2 Text Compression

The presented method in Algorithm 4.3 for optimizing the CMF has been
tested on the well known Calgary Corpus. This test set consists of vari-
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Figure 4.10: Code word length as a function of the number of observations as in

Figure 4.9 but for source 2.
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ous text and data files and has been used for many years for comparing
data compression methods.

In Tables 4.4 and 4.5 we have optimized the CMFs on the entire set of
14 files. We have used 100000 characters (bytes) from each file for the
simulated annealing scheme. Since the size of many of the files are less
than 100000 bytes we have used resampling to collect data and context
data from the files. Each of the 8 bitplanes uses its own CMF and own
CTW. The maximum depth in the CTW trees is (only) 18. The input size
of the mapping rules is 4 binary symbols taken from a 56 bit® context.
The possible gain of using optimized CMF is obvious compared to a “tra-
ditional” CMF. The average rate decreases from 2.953 to 2.498 bits per
input character. The result is, however, not much better for the opti-
mized CMF. We have also compared our results with a PPM scheme with
a maximum depth of 5 from [Abe99] (Table 7.10). We observe that the
results of this PPM scheme is clearly better than our optimized CMF.

D bib | bookl | book2 geo | news | objl | obj2 | paperl
1| 6.261 5.559 5.706 | 6.092 | 6.034 | 6.850 | 7.100 5.848
2 | 5.956 5.297 5.447 | 5.734 | 5.832 | 6.425 | 6.947 5.649
3 | 5.452 4.956 5.197 | 5.469 | 5.524 | 6.262 | 6.732 5.426
4 | 5.219 4.663 4,944 | 5.189 | 5.280 | 6.048 | 6.563 5.191
5| 4.764 4.392 4.703 | 4.619 | 5.041 | 5.805 | 6.351 4.906
6 | 4.331 4.065 4,391 | 4.374 | 4.788 | 5.549 | 6.068 4.585
7 | 3.910 3.926 4,228 | 4191 | 4.626 | 5.261 | 5.719 4.359
8 | 3.564 3.779 4.027 | 4.051 | 4.420 | 4.935 | 5.308 4.101

9 | 3.331 3.660 3.847 | 3.966 | 4.284 | 4.580 | 4.938 3.867
10 | 3.106 3.506 3.655 | 3.898 | 4.112 | 4.208 | 4.594 3.646
11 | 2.909 3.379 3.469 | 3.837 | 3.943 | 3.843 | 4.258 3.426
12 | 2.721 3.261 3.296 | 3.792 | 3.789 | 3.540 | 3.955 3.204
13 | 2.564 3.163 3.137 | 3.761 | 3.643 | 3.319 | 3.692 3.034
14 | 2.419 3.060 2973 | 3.734 | 3.498 | 3.193 | 3.484 2.883
15 | 2.303 2.974 2.839 | 3.711 | 3.381 | 3.133 | 3.338 2.774
16 | 2.215 2.904 2.728 | 3.695 | 3.283 | 3.110 | 3.240 2.696
17 | 2.157 2.846 2.639 | 3.682 | 3.209 | 3.100 | 3.179 2.646
18 | 2.116 2.803 2.576 | 3.672 | 3.157 | 3.096 | 3.141 2.615

| PPM | 1.812 [ 2257 [ 1941 [ 4491 [ 2.331 [ 3.714 [ 2.383 | 2.298

Table 4.4: Rate for the Calgary Corpus files when the CMF is optimized for all
14 files together. The first column, D, corresponds to the depth of the CTW.

We will further analyze why the improvement when using optimized

6Corresponding to 7 bytes.
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paper2 pic | progc | progl | progp | trans Avg || Basic
5.582 | 1.344 6.189 | 6.006 6.127 | 6.621 || 5.809 5.873
5.292 | 1.255 5.977 | 5.728 5.943 | 6.231 || 5.551 5.656
4999 | 1.153 | 5.598 | 5.249 5.406 | 5974 || 5.243 || 5.387
4.718 | 1.062 5.270 | 4.722 4.974 | 5.593 || 4.960 5.102
4.434 | 1.002 4974 | 4.309 4.642 | 5.207 || 4.653 4.868
4.125 | 0.976 | 4.709 | 3.938 | 4.293 | 4.707 || 4.350 || 4.605
3.968 | 0.954 4,468 | 3.752 4.008 | 4.308 || 4.120 4.438
3.776 | 0.932 | 4.198 | 3.508 3.714 | 3.867 || 3.870 || 4.171
3.618 | 0.906 | 3.964 | 3.278 3.391 | 3.502 || 3.652 || 4.001
10 3.424 | 0.893 | 3.690 | 3.034 3.087 | 3.149 || 3.429 || 3.810
11 3.247 | 0.880 | 3.441 | 2.817 | 2.805 | 2.816 || 3.219 || 3.671
12 3.100 | 0.874 | 3.214 | 2.590 | 2.550 | 2.539 || 3.030 || 3.544
13 2.970 | 0.868 | 3.019 | 2.392 2.355 | 2.288 || 2.872 || 3.432
14 2.843 | 0.863 2.875 | 2.222 2.223 | 2.095 || 2.740 3.316
15 2.746 | 0.859 | 2.770 | 2.107 | 2.133 | 1.958 || 2.645 || 3.211
16 2.668 | 0.857 2.708 | 2.021 2.075 | 1.855 || 2.575 3.104
17 2.614 | 0.856 2.667 | 1.967 2.043 | 1.789 || 2.528 3.027
18 2.581 | 0.855 | 2.645 | 1.932 2.026 | 1.753 || 2.498 || 2.953

[PPM | 2271 [ 0.805 | 2.352 | 1.641 | 1.656 | 1.398 || 2.239 | -

©| ool ~a| o] | x| co| po| | S

Table 4.5: Continuation of the previous table. The second last column, Avg,
corresponds to the average rate over all 14 files. The last column, Basic, is the
average result if we just use the plain context data without any optimized CMF.
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CMF is not better. In Table 4.6 only the file paperl is considered and
the CMF is optimized only for that file. Since the size of the file is only
53161 bytes it will probably not make any sense to a use a CTW depth
larger than, let say, 16-17, since the number of observations per node
on maximum depth will be too small. The first observation we make is
that the lowest rate obtained for paperl in Table 4.6 is 1.798 and from
Table 4.4 we got 2.615. The difference in rate of 0.635 bits/source symbol
is substantial. The only explanation for this difference is that the files in
Calgary Corpus are not similar enough to optimize the CMFs for all files
together.

Another observation we make from Table 4.6 is that a map rule input
size of 3 bits gives the best result. It would have been reasonable to
an input size of 5 bits would give at least equal result since all possible
functions with 3 input bits is just a subset of the functions with input
size 5. The reason in this case why input size 4 and 5 gives worse result
is that the same iteration length and stop criteria are used in all cases.
But since the function space grows exponentially with the input size the
larger map functions do not get enough time to converge in the same way
as for example input size 3 in this case.

Depth | 1 2 3 4 5 basic
1 5.726 | 5.525 | 5.471 | 5.437 | 5.555 || 5.895
2 5.415 | 5.117 | 5.097 | 5.015 | 5.215 || 5.729
3 5.127 | 4.727 | 4.718 | 4.702 | 4.846 || 5.495
4 4.808 | 4.454 | 4415 | 4.399 | 4.510 || 5.274
5 4.461 | 4.189 | 4.111 | 4.128 | 4.219 || 5.098
6 4.177 | 3.885 | 3.807 | 3.834 | 3.899 || 4.840
7 3.889 | 3.592 | 3.496 | 3.493 | 3.564 || 4.722
8 3.600 | 3.311 | 3.177 | 3.163 | 3.238 || 4.440
9 3.322 | 3.033 | 2.866 | 2.837 | 2.891 || 4.261
10 3.042 | 2.773 | 2.597 | 2.547 | 2.561 || 4.023
11 2.800 | 2.540 | 2.360 | 2.303 | 2.315 || 3.870
12 2.593 | 2.346 | 2.168 | 2.119 | 2.124 || 3.737
13 2.443 | 2.190 | 2.027 | 1.983 | 2.011 || 3.625
14 2.337 | 2.073 | 1.924 | 1.899 | 1.933 || 3.492
15 2.267 | 1.998 | 1.862 | 1.844 | 1.887 || 3.380
16 2.229 | 1.941 | 1.819 | 1.817 | 1.870 || 3.254
17 2.208 | 1.910 | 1.798 | 1.801 | 1.861 || 3.170

Table 4.6: Comparison of the rate for paperl with various depth on the CTW
scheme and various input bit size of the mapping functions.
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A final observation we make from these experiments is that when op-
timizing over all the files in Calgary Corpus we gain in rate for every
increase in depth of the CTW model. Thus, we are not able to actually
reduce the useful length of the meta-context to something as short as
17 bits. One might also argue whether it is reasonable to use the same
CMF for all files since some of the files are text files, there is one image
file, one file with numerical data etc. The result may be improved upon
if we could use one CMF for text files, one for image files etc. However,
there will be an additional cost of describing which CMF is actually used.

4.4.3 Image Compression

In Table 4.7 we have compared the compression performance for various
medical images and the famous lena image with and without the usage
of optimized CMF. The images are tested in four different ways: Raw
= the original image and a basic CMF, Raw+CMF = the original image
and an optimized CMF, Pred = the original image is transformed via a
simple’ prediction scheme and a basic CMF is used, Pred+CMF = the
same as Pred but an optimized CMF is used. From the results we note

Image Raw | Raw+CMF | Pred | Pred+CMF
lena 5.436 3.987 | 4.288 3.917
backen | 2.543 1.269 | 1.620 1.317
buk 3.131 1.765 | 2.144 1.727
skalle 2.002 1.050 | 1.188 0.906
thorax | 3.873 2.243 | 2.518 1.985
| Avg | 2.887 | 1.582 | 1.868 | 1.484 |

Table 4.7: Results in (calculated) code word rate when applying CMFs to the
source coding scheme. All images are of size 512x512 with 8-bit gray levels.
Except for the first image these are all medical images. The last line is the
average rate for the medical images.

the beneficial effect the prediction has on the compression performance.
The gain is, however, lower when the optimized CMF's are used.

It should be noted that these results are not comparable with results
from other image compression schemes since the CMFs are optimized
individually for each image. To be able to use this kind of construction
for a practical application the CMF must be determined beforehand on

7Simple in this case means that we use an average of the 4 closest neighbors as a pre-
diction.
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a test image set. This is done in Table 4.8. For comparison we give the
corresponding compression results on the test images for JPEG-LS and
PNG in Table 4.9.

Depth | backen | buk | skalle | thorax | Avg
1 1.791 | 2.343 | 1.645 2.811 | 2.148
2 1.654 | 2.161 | 1.412 2.590 | 1.955
3 1.591 | 2.081 | 1.298 2.489 | 1.865
4 1.555 | 2.035 | 1.239 2.432 | 1.815
5 1.517 | 1.997 | 1.191 2.380 | 1.771
6 1.497 | 1.971 | 1.164 2.345 | 1.744
7 1.480 | 1.951 | 1.142 2.316 | 1.722
8 1.467 | 1.936 | 1.123 2.292 | 1.704
9 1.458 | 1.925 | 1.108 2.276 | 1.692

10 1.453 | 1.918 | 1.100 2.266 | 1.684
11 1.448 | 1.913 | 1.094 2.258 | 1.678
12 1.445 | 1.910 | 1.090 2.254 | 1.675
13 1.443 | 1.908 | 1.087 2.251 | 1.672
14 1.442 | 1.907 | 1.086 2.249 | 1.671
15 1.441 | 1.906 | 1.085 2.248 | 1.670
16 1.440 | 1.905 | 1.084 2.247 | 1.669

Table 4.8: The rate for the medical images when the CMF is optimized for all
images together. After depth 8 the improvement is very small.

We note that, in contrast to the text compression case, the performance
in Table 4.8 does not really improve after depth 8.

Another difference compared to the text compression case is that we in
image compression are actually able to outperform the JPEG-LS scheme
on these medical images.

4,5 Conclusions

The benefit of using optimized CMFs, as presented in this chapter, is that
we can systematically search for good CMFs without having to rely on
ad-hoc decisions when constructing a lossless data compression scheme.
Another benefit we get for free is that we could use the CMF to shorten
the length of the meta-context and thus reduce the computational com-
plexity of the context modeling.

We conclude that it is possible to construct good CMF's off-line via sim-
ulated annealing. Our presented test results clearly show the great ad-
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Image | JPEG-LS | PNG | Opt CMF
lena 4.237 | 4.611 -
backen 1.554 | 2.568 1.440
buk 2.028 | 3.343 1.905
skalle 1.358 | 2.645 1.084
thorax 2.418 | 4.139 2.247
| Avg | 1.840 | 3.174 | 1.669 |

Table 4.9: Compression rate per pixel for the test images with the JPEG-LS,
and the PNG compression schemes. For comparison the results from Table 4.8
are given in the last column.

vantage of “optimized” CMF. We also conclude that the scheme presented
in Figure 4.1 can be applied to text, image or any other data. The only
thing that has to change is the CMF. It will also be possible to change the
CMTF for different kinds of languages etc. in text compression. However,
the extra description cost for the chosen CMF and the extra memory
requirements for the compression/decompression algorithms must be in-
vestigated.

As a side effect the presented results also show the danger of using
certain test sets of images or “text corpuses” when comparing compres-
sion algorithms. By using optimized CMF we are able to build in a fair
amount of a priori knowledge about the test set.
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Chapter 5

Compression of the

Request Sequences in
ARQ Protocols

In this chapter we present simple yet efficient compression methods bas-
ed on universal source coding ideas for the repeat request data in ARQ
protocols. Beside the compression methods themselves, we give an in-
depth motivation for the chosen encoder models. The choice of method is
backed-up by simulations. This work was presented in [ERSS01].

5.1 Introduction

In this chapter we address the problem of compressing the repeat request
data in ARQ protocols (ARQ = automatic repeat request). Such protocols
are used in different types of data networks (see, e.g., [BG87]). A mod-
ern example of a radio network where ARQ is applied is the UMTS sys-
tem as being standardized in the 3rd Generation Partnership Program
(BGPP) [3rd99]. The UMTS system is a radio network that operates at
high transmission rates and is targeted to be used in mobile communi-
cation. The ARQ protocol data we are considering here are the repeat
request (binary) sequences which should be processed (compressed) in-
dependently. Due to lack of knowledge about the statistical properties of
the data, most of the practical algorithms are universal, i.e., algorithms
that can adapt to unknown parameters of a known (or even partially un-
known) statistical model of the data. A larger length of the data sequence
decreases the influence of the lack of information about the statistical

111
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data properties, and vice versa. The problem of unknown statistics (and
the universality of the algorithm) is very manifest since the lengths of
the repeat request sequences are rather small.

In Section 5.2 we will describe some properties of ARQ and we detail
the compression problem that will be studied. The problem of unknown
statistics of the repeat request data is considered in Section 5.3. In Sec-
tion 5.4 the compression algorithms are proposed and their performances
are studied through simulations in Section 5.5.

5.2 Defining the problem

In many modern communication systems data of several sources is mul-
tiplexed into blocks that are transmitted. In the transmission process the
transmitted blocks may get corrupted in spite of a feed-forward error-
correction mechanism. Through the use of cyclic redundancy checks
(CRC) the receiver can correctly detect, with high probability, the er-
roneous blocks and request for retransmission of the blocks in error. For
our study of the sequence of repeat requests or just request sequences
(Rs) we ignore all the involved details of such an automatic repeat re-
quest scheme. We let a 1 denote that a block has been successfully re-
ceived and let a 0 denote a block in error or a block not received. Fig-
ure 5.1 illustrates the steps from which the Rs arise. If no errors occur on

Channel
oo »
Blocks
— > >
Data —> s):rF\QdQer reﬁsi(\?er — Data
—» - —

Rs

Figure 5.1: The origin of the repeat sequence (Rs) in a ARQ protocol.

the transmission channel then the Rs is a binary sequence 11...100...0
of given length N. Any such sequence is described entirely by its length
n* < N of run of ones, and it suffices to encode (describe) n* by a uniform
encoding (of length log N) or a variable length prefix code. However, the
advantages of variable length coding are not obvious (and have definitely
no essential impact). Therefore we shall assume a uniform coding which
gives a rate of (log N)/N.
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Correctly received blocks result in the substitution of zeros into ones in
the Rs. When we receive more blocks we will thus get more ones in our
Rs described by the binary sequence z". The position of the last one
in z™ will therefore increase. However, the value of N does not change,
i.e., the length of run of zeroes decreases. Therefore we now must de-
scribe the value of n and z™ (which we will refer to as the bitmap). The
description should be as short as possible. This is the main task for
our data compression scheme. The most efficient coding of 2" is based
on known probabilities of all bitmaps of given length n. Unfortunately,
these probabilities are neither known nor constant, i.e., they will vary
with time. Sometimes the knowledge of a source model or of a rather nar-
row set of such models is used for increasing the coding efficiency. But
for the considered problem this does not work: the statistical properties
of bitmaps are defined by the statistical properties of the error sequence
e" = e1,...,en, €; € {0,1}, and by the ARQ algorithm, and both these
“components” are practically unknown and/or very complex to describe.
In fact, error sequences are “generated” by many sources of different
nature, and their mixture in the different proportions defines a very wide
class of possible sources. But even for a small set of models (or just
one model) we can not recalculate the statistics of error sequence into
statistics of bitmaps; the complexity of any ARQ algorithm leaves us no
chances of solving this problem. Thus the problem is formulated in the
following way: we must encode (compress) the output of the black box
(ARQ algorithm) with unknown input signal (error sequence).

5.3 The Statistical Model

From our data compression perspective we will consider the simplified
model shown in Figure 5.2.

Error ei € {0,1} | X; e {01}V
source » ARQ-system

Figure 5.2: The system under consideration from the data compression perspec-
tive.

For this model we note the following important properties:

e The error source generates a continuous stream of binary symbols,
ei,i=0,1,2,...



114 Chapter 5: Compression of the Request. ..

e The ARQ-system generates bitmaps of binary symbols and with a
predefined size, X;, j =0,1,2,...

e The amount of data on the input and output of the ARQ-system is
not necessarily the same. Actually, the ARQ-system tries to keep
the number of bitmaps as low as possible under the constraint that
the communication system should work.

e The first position in the ARQ bitmap is always a zero, i.e., denot-
ing a not received (or not correctly received) block. In order for
this to be possible the ARQ-system also has a special mechanism
to provide a description of the first position of the bitmap. This
description is not considered in this work.

e There is a high correlation between bitmaps but since there are
errors on the channel sending the bitmaps we will be unable to use
this correlation.

Since our aim is to compress the bitmaps generated by the ARQ-system
we must know what kind of properties we can use in this data. We
may know the properties of the communication system and thus the
properties of the error source. The commonly used models for the er-
ror source are based on independent errors and burst errors respectively
(e.g. see [BG87]). A reasonable assumption is that the independent er-
rors will introduce isolated zeros and burst errors will generate runs of
zeros in the ARQ bitmap. These properties will be confirmed in the stud-
ies in Section 5.5.

5.4 Some Compression Algorithms

The traditional methods (we again refer to [BG87]) of describing the
bitmaps of the ARQ-system are based on the two models of block error,
i.e., independent and burst.

Describing (many) independent errors in a bitmap can not be expected
to be done efficiently, no matter what compression scheme we use. It
is the same as compressing data from a binary memoryless source with
an unknown parameter. Based on the results in [WST95] we know “ex-
actly” what we can achieve with a Dirichlet estimator and an arithmetic
encoder. For this reason the “conventional” method has been to just
describe the position of the last one in the bitmap and then a raw de-
scription of the bitmap. This is an appealing method from a complexity

perspective. We will in the sequel denote this as the bitmap-description
(BM).
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When we consider the case of having burst errors we will (most likely)
get runs of ones and zeros in the bitmap (for independent errors we may,
however, also get runs of ones followed by a single zero). The “traditional”
method in this case is to use a list-description. This method describes, in
a list, the positions where the bitmap changes from a run of one symbol to
a run of the other symbol. This could also be done by just describing the
length of each run in the bitmap. The codeword for each such description
could either be described by a fixed number of bits or by using arithmetic
encoding where the likelihood is uniformly distributed over the possible
range of values. Using the simple method of a fixed precision numbers
for the run lengths we get a low complexity method. Using arithmetic
encoding is somewhat more complex but will on the other hand yield
a significantly better result if we have many runs in the bitmap. This
is due to the fact that we will pay an extra (unnecessary) cost for each
description since we will reserve code word space for events that will not
occur. In the sequel when referring to the list description we will use the
method based on arithmetic encoding.

In an actual mobile communication systems we will, however, have a
mixture of independent errors and burst errors. A natural extension to
the bitmap and list descriptions would in this case be to spend one extra
bit describing which method is used (bitmap or list) and then use that
method. In fact, this method is actually the one which is used in the
UMTS standard. The goal would be to use the method resulting in the
shortest description. Note that for the bitmap representation we have no
actual compression except for the description of the last position where
we have a one in the bitmap.

There are two other description methods worth considering based on the
principles above:

e List/bitmap-mixture: it is possible to describe parts of the bitmap
with the list description and other parts, where the list description
works poorly, with a bitmap description. Such a approach will, how-
ever, result in a very computationally complex algorithm since we
have to find a good (or optimal) partitioning of the bitmap.

e Universal coding of the runs: based on the list description we may
estimate the probability for each length of run. In the list de-
scription previously defined we used a uniform description for all
lengths. The problem with this approach is the number of unknown
parameters. If we have k possible lengths of the runs we have k£ — 1
unknown probabilities (parameters). From previous chapters we
know that the number of unknown parameters are of major im-
portance for the compression performance. In this case k will be
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of the same order as the maximum length of the bitmap and thus
making this an intractable approach if we cannot reduce the num-
ber of unknown parameters in some way. For example, if we have
prior knowledge about the lengths being exponentially distributed
we may use results from Section 2.5 and Chapter 3.

Getting back to the main issue we must thus construct a compression
scheme that will be able to handle a mixture of independent and burst
errors with a reasonable number of unknown parameters. How do we
then distinguish independent from burst errors? In Figure 5.3 we have
two similar Markov models.

(DT @ G
(0

a) b)

Figure 5.3: Two Markov models with 3 unknown parameters. In the left model
an alphabet extension is made to take care of the two observation of either two
zeros or a zero and a one. In the right model we use a conventional Markov
model.

If we start by considering Figure 5.3a we have the two states in the model
where each state corresponds to “the last symbol”, i.e., erroneous or cor-
rectly received block. If the last symbol was one we have two possibili-
ties, the next symbol will also be a one (e.g. we are in a burst of correctly
received blocks) or we will enter some runs of zeros. In this case we dis-
tinguish between an independent error and stay in the one state or we
have a burst error and enter the 00-state. If we enter the “burst error
state”, i.e., 00, we stay there until we get a one, i.e., end of burst. Fig-
ure 5.3b describes essentially the same thing. When we are in the one
state and get a zero we enter the “error” state 10. Based on the next sym-
bol we know if it was an independent error or a burst error and change
state accordingly to 1 or 00, respectively. The model in Figure 5.3b is
straight forward to convert to a tree model (compare for example with
the results of FSMX sources by Rissanen [Ris83]).



5.5 Experiments 117

Based on these Markov models and their corresponding tree models we
will investigate the compression performance using fixed tree models
and compare the results with the CTW algorithm.

5.5 Experiments

The basis for our tests are different models of the bit errors occurring on
the transmission channel. We have used both our own idealized models
and also data obtained from a UMTS system under different test condi-
tions.

The error models that we will consider are based on independent errors
and burst errors. These models will help us determine some important
characteristics of the ARQ-system and they are also often the major con-
cern in a mobile communication system.

From the bit errors we have produced the corresponding block errors and
used these in a “simple” selective repeat ARQ system.

Since the output from the ARQ system differs “very much” according to
the retransmission strategy used, we make the actual bitmaps available
on the web [Eks00]. This allows others to apply their compression algo-
rithms and compare their results with ours.

5.5.1 Verifying the Statistical Properties

We will compare the statistical properties of the input and the output
data of the ARQ-system, i.e., the error sequence e; and the bitmaps X;
in Figure 5.2. What we are interested in is whether the ARQ-system
(the “black box”) preserves the burst of runs from the input data to the
bitmaps as previously assumed. Therefore, we will use test error se-
quences with a wide range of different lengths of the bursts. Those burst
models we will consider are generated by the following three sources:

IND independent block errors with probability P,.

MB “medium burst” block errors. The average block error probability
is P.. The lengths of the runs are distributed almost uniformly in
{1,2,...,10}. See remark below.

LB “large burst” block errors. The only difference compared to MB is
the lengths of runs: {1,2,...,100}.

A remark about the burst errors. Since we generate the errors on the bit
level which will be grouped together to blocks, the probability for block
errors will not be uniformly over the burst lengths {1,2,..., M}, M =
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{10,100}. It holds, approximately, that P(1) + P(M + 1) = P(i) = 1/M,
1=2,3,..., M.

We have generated 2500 bitmaps, each of length 1024. The probabilities
for the different lengths of bursts, m, are given in Table 5.1 (IND-model)
and Table 5.2 (MB-model). A corresponding table for the LB-model does
not fit in this thesis since it would occupy too many pages.

In the tables for the IND-model and MB-model we have used four differ-
ent values on the block error probability P,. We compare the probability
distribution on the input and the output of the ARQ-system.

Independent errors
1% 5% 10% 15%
98.8 | 89.5 || 94.1 | 92.3 || 89.3 | 89.1 || 84.8 | 86.1
1.1 | 6.0 55| 6.2 95| 9.2 129|114
0.0 29 03] 1.0 1.0 | 1.3 20| 2.0
00| 12 0.0| 0.3 0.1] 0.3 03| 04
0.0 0.3 0.0| 0.1 0.0| 01 01| 0.1
0.0 | 0.1 0.0 0.0 0.0 | 0.0 0.0 | 0.0
0.0 | 0.0 0.0 0.0 0.0 | 0.0 0.0 | 0.0
0.0 | 0.0 0.0 0.0 0.0 | 0.0 0.0 | 0.0
0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0
10 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0
11 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0
12 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0
13 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0
14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

QO@\‘I@O‘I;POJM)—*B

Table 5.1: The results of ARQ testing for the IN models. The probability distri-
butions are given in percent.

A subjective conclusion from Table 5.2 and Table 5.1 (and from corre-
sponding results with LB) is that the ARQ-system conserves the burst
distribution from the input error sequence to the bitmaps since the prob-
ability distribution seems similar in these tables. Furthermore, the av-
erage length of the actually used bitmap, n, increases when P, increases
for the IND errors. We will not discuss this behavior of the ARQ-system
in this thesis but it is a subject of interest when optimizing the ARQ-
system to use bitmaps that are as few and as short! as possible.

1Short here refers to the used size of the bitmaps n.
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Medium burst
1% 5% 10% 15%
57| 6.7 52| 72 49 | 85 4.8 | 10.1
10.5 | 22.5 || 10.3 | 16.3 || 10.1 | 15.5 9.6 | 15.1
9.3 | 15.7 9.5 | 13.0 9.7 | 125 9.6 | 125
9.8 | 10.5 9.7 | 10.3 9.8 | 10.5 9.2 | 10.2
9.9 7.7 93| 84 9.7 | 9.2 99| 94
10.5 7.3 102 | 8.6 98| 86| 10.0 | 8.7
10.1 7.0 99| 8.0 98| 8.0 99| 79
98 | 6.4 96| 7.8 99| 7.7 98 | 7.3
10.2 6.7 || 100 | 7.9 98 | 74 9.8 | 6.9
10 9.2 62| 104 | 8.1 98 | 72| 10.1| 6.9
11 48 | 3.0 51| 4.0 53| 3.8 50| 34
12 0.1 0.1 02| 0.1 03| 02 04| 03
13 00| 0.0 0.1 0.1 02| 02 04| 03
14 00| 0.0 0.1 0.1 03| 02 04| 02

© 00 -1 Uk w N | B

Table 5.2: The results of ARQ testing for the MB model. The probability distri-
butions are given in percent.

5.5.2 Compression efficiency

The same simulation procedure and the same error source models, as in
Section 5.2, were used for the estimation of the efficiency of the compres-
sion algorithms. We have once more used 2500 bitmaps of the length
N = 1024. The results of the various compression schemes are presented
in the Table 5.3.

The first and the second columns describe the error source model and
the value of P, (in percent) respectively. The next 8 columns contain the
values of average length of codeword for one Rs (including log N = 10
bits for the description of variable value of n) for 8 different compression
algorithms.

BM is bitmap coding with codeword length ~ log N + (7i — 2), where 7 is
the average value of n over 2500 bitmaps. When constructing the bitmap
code words the first and the last symbol in the bitmap are known, i.e.,
the first is always 0 and the last (pointed out by n) is always 1 (except
when n = 0).

“List” is a basic method of describing runs of zeroes and ones. The
method just points out those positions in the bitmap where changes from
a run of one symbol to the other occurs. Each such point requires logb
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e BM List MCO | MC1 | MC2 | CT3 CwW2 | CW3
IND |1 316.5 | 98.8 | 43.0 44.6 46.9 45.3 44.5 45.4
IND | 5 521.6 | 385.7 | 136.8 | 138.6 | 141.6 | 139.9 | 138.3 | 139.2
IND | 10 | 626.3 | 604.5 | 207.8 | 209.3 | 212.5 | 210.9 | 209.1 | 209.9
IND | 15 | 680.4 | 767.2 | 260.5 | 261.3 | 263.8 | 263.0 | 261.1 | 261.8
MB |1 174.8 | 33.6 48.2 24.0 25.3 24.5 249 | 252
MB |5 333.6 | 76.5 112.8 | 50.2 52.6 51.1 52.2 52.8
MB | 10 | 463.0 | 139.4 | 190.5 | 87.0 89.5 87.8 89.0 89.5
MB | 15 | 544.3 | 192.2 | 250.1 | 116.9 | 119.3 | 117.6 | 118.7 | 119.3
LB 1 36.2 14.1 27.4 13.5 13.7 13.6 12.9 13.0
LB 5 102.0 | 19.8 67.2 17.7 18.4 18.0 17.8 18.1
LB 10 | 187.4 | 28.3 1215 | 24.3 25.6 25.0 25.2 25.8
LB 15 | 262.8 | 37.5 171.5 | 31.5 33.4 32.5 33.0 33.8
Mix | - 4714 | 168.2 | 195.8 | 96.1 95.2 93,5 | 95.1 96.0
tel 10 | 349.4 | 54.9 170.1 | 41.4 42.4 42.5 42.7 | 43.3
te2 10 | 289.3 | 48.4 157.3 | 36.9 38.1 37.9 38.2 38.8
te3 10 | 294.3 | 48.2 156.3 | 36.8 38.1 37.8 38.2 39.0
tcd 10 | 337.9 | 53.0 168.1 | 40.0 41.1 41.1 41.3 42.0

Table 5.3: Some results of the compression efficiency.

e BM List MCO | MC1 | MC2 | CT3 | CW2 | CW3
IND |1 99.0 40.2 14.3 14.6 | 15.0 | 14.7 | 145 | 145
IND | 5 167.2 | 919 | 29.1 202 | 294 | 294 | 29.2 | 29.2
IND | 10 | 176.2 | 172.2 | 53.1 53.1 | 53.3 | 563.3 | 563.1 | 53.1
IND | 15 | 178.1 | 236.0 | 71.3 71.0 | 70.9 | 71.2 | 70.9 | 70.9
MB |1 155.2 | 204 36.6 124 | 13.3 | 12.8 | 13.6 | 13.8
MB |5 163.1 | 34.5 514 | 20.7 | 212 | 209 | 211 | 21.2
MB | 10 | 216.3 | 52.9 71.1 30.6 | 30.8 | 30.5 | 30.6 | 30.7
MB | 15 | 232.5 | 69.1 89.3 39.2 | 394 | 39.2 | 39.3 | 39.3
LB 1 79.2 6.4 514 | 4.7 5.3 5.0 5.6 6.0

LB 5 155.2 | 12.3 94.6 9.4 104 | 9.9 10.8 | 11.3
LB 10 | 201.0 | 17.4 123.7 | 13.7 | 150 | 144 | 152 | 15.6
LB 15 | 234.3 | 22.4 1428 | 179 | 19.1 | 18.6 | 19.1 | 19.4
Mix | - 213.5 | 92.0 1124 | 45,5 | 43.3 | 43.2 | 43.6 | 43.7
tel 10 | 197.2 | 26.6 57.0 16.1 | 145 | 159 | 14.7 | 14.3
te2 10 | 192.7 | 27.5 80.5 175 | 16,5 | 17.5 | 16.7 | 16.4
te3 10 | 195.0 | 25.7 73.3 165 | 15.6 | 16.4 | 15.7 | 15.6
ted 10 | 183.3 | 28.3 57.9 16.8 | 149 | 16.6 | 15.1 | 14.5

Table 5.4: The (unbiased) estimate of the standard deviation of the compressed
size in Table 5.3 for the different compression methods.
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bits to describe?, where b is the number of possible remaining positions.
The MCO, MC1 and MC2 are Markov chain encoders of depth 0, 1 and
2 respectively (MCO corresponds to a memoryless model with 1 state),
CT3 is the Context Tree Markov model (see Figure 5.3b), CW2 and CW3
are Context Tree Weighting algorithms for maximal memory depth 2
and 3 respectively (see [WST95]). Thus, any row of Table 5.3 contains
the average lengths of Rs description for all chosen compression methods
with given error source model and value of P,.

It was clear beforehand that MCO is the best algorithm for the IND
model, but it is much worse for the MB and the LLB models than the
other algorithms. Therefore it should not be used in practice.

The last 5 algorithms has a similar compression performance. MC1 and
MC2 are slightly better and slightly worse, respectively, than the other
ones. In particular, MC2 is worse than MC1, CT3 and CW2 for any error
model (except Mix) and for any value of P, since the replacing of state “1”
in MC1 and CT3 by states “01” and “11” in MC2 gives us no advantages
but increases the number (and the “cost”) of unknown parameters.
Since the efficiency of the proposed algorithms almost coincides, we sho-
uld pay attention to other properties of the algorithms. It seems almost
obvious that the flexibility, i.e., ability to adapt to unpredictable situa-
tions, is the most important property after the efficiency. For example,
CTW weights all CT models with restricted memory depth, i.e., takes
into account all CT models simultaneously. Therefore, it is not surpris-
ing, that CW2 and CW3 give almost optimal results for all error models
and all values of P,. It also illustrates that the best encoders for different
conditions are different.

The algorithm “List” is the most efficient one for describing runs of large
length. But even in this case it is slightly worse than some of the previ-
ously discussed algorithms. Furthermore, the important advantages of
the proposed algorithms consist of the absence of any preliminary anal-
ysis of bitmaps and in a uniform coding process.

Thus we suppose that CT3 or CW2 is the best choice. The number of
unknown parameters for the CT3 model is, of course, three. For CW2 we
may say that it is variable with 1, 2, 3 or 4 parameters. Considering the
computational complexity and storage requirement there are, however,
3 and 7 parameters respectively.

The used error models match rather well with the above considered test-
ing problem. In spite that the error models cover a wide range of possible
situations, the mixture of different error sequences should be considered
too. The row “Mix” of Table 5.3 contains the results for such a mixture
of IND, MB and LB errors. The probabilities for each of these errors

2If we use an arithmetic encoder.
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changes throughout the data sequence in a way that is similar to a “real
world” situation of mobile communication.

Finally, we report the results from 4 test-cases (tcl-tc4) which were de-
rived from simulations of a mobile communication system. These 4 cases
should correspond to “real world” situations and are defined by the 3GPP.
We note that the results are fairly good for the list compression and con-
clude that this data contains very few independent errors compared to
the number of errors generated by burst errors.

The results confirm our conclusion; CT3 and CW2 give the best results
along with MC2 if we consider both compression efficiency and robust-
ness against “independent” errors. As a measure of robustness we con-
sider the standard deviation, s, for the code words, i.e.,

2
s = nil Zan—%(ZnL,) , (5.1)

where L;, i = 1,2,---,n, denote the length of the code words. In Table 5.4
we present the standard deviation for the different algorithms.

5.6 Conclusions

To conclude, in this chapter we have studied the problem of compress-
ing the representation of the repeat request sequences in ARQ protocols.
By carefully limiting our scope and by carefully studying data we formu-
lated encoder models, which were then the basis for a study of several
compression methods which we have evaluated. Our method based on
the CT3 model gives a better performance than existing, more or less
ad-hoc compression methods that uses “list” type methods. Yet, the CT3
method has roughly the same computational complexity as these exist-
ing ones and can be implemented in only about 1 to 1.5 A4 pages of C
code. Hence the method is both simple and performs very well.
Compared to the mixed list/BM scheme the CT3 method requires no
analysis step of the bitmap as it can encode the bitmap directly, sym-
bol by symbol.

Finally, following the procedure used in our work it is straightforward
to address similar communication settings where feedback from the re-
ceiver to the sender is used to realize efficient data transmission.
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